MHB Finding GCD of $(1+\sqrt2)^{2017}$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Gcd
Click For Summary
The discussion focuses on finding the greatest common divisor (GCD) of the natural numbers \(a\) and \(b\) from the expression \((1+\sqrt{2})^{2017} = a + b \sqrt{2}\). Participants share different methods to compute \(a\) and \(b\), ultimately leading to the conclusion that the GCD is 1. The mathematical properties of the expression and its implications for GCD calculations are highlighted. The conversation emphasizes the significance of understanding algebraic integers in this context. The final consensus is that the GCD of \(a\) and \(b\) is indeed 1.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the greatest common divisor of the natural numbers, $a$ and $b$, satisfying:
$$\left(1+\sqrt{2}\right)^{2017} = a + b \sqrt{2}.$$
 
Mathematics news on Phys.org
lfdahl said:
Find the greatest common divisor of the natural numbers, $a$ and $b$, satisfying:
$$\left(1+\sqrt{2}\right)^{2017} = a + b \sqrt{2}.$$

first let us see the relationship of gcd(a,b) and gcd(c,d) where $(c+d\sqrt{2}) = (a+b\sqrt{2})(1+\sqrt{2})$
we get by mutiplication $c= a + 2b , d= a+b)$
so $gcd(c ,d) = gcd(a+2b, a + b) = gcd(a+b,b) = gcd(a,b)$
starting with power 1 we have $a= 1, b= 1$ so gcd 1
just to cross check for power 2 we have $(1+\sqrt{2})^2 = 3+ 2\sqrt{2})$ and gcd = 1
so we get the result as 1 using above rule repeatedly
 
kaliprasad said:
first let us see the relationship of gcd(a,b) and gcd(c,d) where $(c+d\sqrt{2}) = (a+b\sqrt{2})(1+\sqrt{2})$
we get by mutiplication $c= a + 2b , d= a+b)$
so $gcd(c ,d) = gcd(a+2b, a + b) = gcd(a+b,b) = gcd(a,b)$
starting with power 1 we have $a= 1, b= 1$ so gcd 1
just to cross check for power 2 we have $(1+\sqrt{2})^2 = 3+ 2\sqrt{2})$ and gcd = 1
so we get the result as 1 using above rule repeatedly
Well done, kaliprasad!
Below are two alternative solutions:

Solution I.

Note, that $(1+\sqrt{2})^{2017}(1-\sqrt{2})^{2017}=-1$.

If we expand $(1+\sqrt{2})^{2017}$ and $(1-\sqrt{2})^{2017}$ by Newton´s binomial formula, we readily see, that $(1-\sqrt{2})^{2017} = a-b\sqrt{2}$, since irrational terms of the expansions are terms with odd power of $\sqrt{2}$.
Therefore, $(1+\sqrt{2})^{2017}(1-\sqrt{2})^{2017}=(a+b\sqrt{2})(a-b\sqrt{2})=a^2-2b^2.$ Thus, $a^2-2b^2=-1$. Now, if $d$ is a greatest common divisor of $a$ and $b$, then $d|a^2$ and $d|b^2$, and therefore
$d|(a^2-2b^2)=-1$. Thus, $d=1$.

Solution II (induction).

For $n = 1,2,.. $ define the natural numbers $a_n$ and $b_n$ by $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}.$ We prove, that the greatest common divisor of $a_n$ and $b_n$ is equal to $1$ for every $n = 1,2,...$.
Clearly, $a_1 = b_1 = 1$. From

\[a_{n+1}+b_{n+1}\sqrt{2}=(1+\sqrt{2})^{n+1}=(1+\sqrt{2})^n(1+\sqrt{2}) \\\\=(a_n+b_n\sqrt{2})(1+\sqrt{2}) = a_n+2b_n+(a_n+b_n)\sqrt{2}\]

it follows, that

\[a_{n+1} = a_n+2b_n, \: \: \: b_{n+1} = a_n+b_n\]

Now, any common divisor of $a_{n+1}$ and $b_{n+1}$ also divides $2b_{n+1}-a_{n+1} = a_n$ and $a_{n+1}-b_{n+1}= b_n$ and so is a common divisor of $a_n$ and $b_n$. Therefore, gcd$(a_{n+1},b_{n+1})= 1$, whenever gcd$(a_{n},b_{n})= 1$. Since, gcd$(a_1,b_1)= 1$, it follows by induction, that gcd$(a_{n},b_{n})= 1$ for all positive integers $n$. Particularly, gcd$(a,b)=$ gcd$(a_{2017},b_{2017})= 1$.
 
Last edited:

Similar threads

  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K