Can anyone please review/verify my proofs for gcd problem?

  • Thread starter Math100
  • Start date
  • #1
Math100
690
180
Homework Statement:
Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:
None.
Proof: (a) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a-b).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a-b).
This means d##\mid##[(a+b)+(a-b)] and d##\mid##[(a+b)-(a-b)],
so we have d##\mid##2a and d##\mid##2b.
Note that d##\leq##gcd(2a, 2b)=2 gcd(a, b).
Since gcd(a, b)=1, it follows that 2 gcd(a, b)=2(1)=2.
Thus, d##\mid##2, which implies that d=1 or d=2.
Therefore, gcd(a+b, a-b)=1 or 2.
(b) Suppose that gcd(a, b)=1.
Let d=gcd(2a+b, a+2b).
By definition of the greatest common divisor,
we have that d##\mid##(2a+b) and d##\mid##(a+2b).
This means d##\mid##[2(2a+b)-(a+2b)] and d##\mid##[-(2a+b)+2(a+2b)],
so we have d##\mid##3a and d##\mid##3b.
Note that d##\leq##gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d##\mid##3, which implies that d=1 or d=3.
Therefore, gcd(2a+b, a+2b)=1 or 3.
(c) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}+b^{2}).
This means d##\mid##[(a^{2}+b^{2})+(a^{2}-b^{2})] and d##\mid##[(a^{2}+b^{2})-(a^{2}-b^{2})],
so we have d##\mid##2a^{2} and d##\mid##2b^{2}.
Note that d##\leq##gcd(2a^{2}, 2b^{2})=2 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 2 gcd(a^{2}, b^{2})=2(1)=2, and so d##\mid##2,
which implies that d=1 or d=2.
Therefore, gcd(a+b, a^{2}+b^{2})=1 or 2.
(d) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}-ab+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}-ab+b^{2}).
This means d##\mid##[(a+b)^{2}-(a^{2}-ab+b^{2})], so we have d##\mid##3ab.
Note that each prime divisor k of d must divide either 3, a or b.
Thus, we have that d##\mid##[3a(a+b)-3ab] and d##\mid##[3b(a+b)-3ab],
so d##\mid##3a^{2} and d##\mid##3b^{2}.
Then we get d##\leq##gcd(3a^{2}, 3b^{2})=3 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 3 gcd(a^{2}, b^{2})=3(1)=3, and so d##\mid##3,
which implies that d=1 or d=3.
Therefore, gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
 

Answers and Replies

  • #2
fishturtle1
394
81
Homework Statement:: Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:: None.

Note that d≤gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d∣3, which implies that d=1 or d=3.
b) From the first and second line, we can conclude ##d \le 3##. But that doesn't imply ##d## divides ##3##. But this can be fixed by changing the first line to "Note that ##d## divides ##\gcd(3a,3b) = 3\gcd(a, b)##". You may want to make a similar change in a, c, d) even though it kind of works out in a) and c) case.

Homework Statement:: Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:: None.

By definition of the greatest common divisor,
we have that d∣(a+b) and d∣(a^{2}+b^{2}).
This means d∣[(a^{2}+b^{2})+(a^{2}-b^{2})] and d∣[(a^{2}+b^{2})-(a^{2}-b^{2})]
c) Maybe I'm just being slow, but i think it would be helpful to include a line "Since ##d \vert (a+b)##, we have ##d \vert (a+b)(a-b) = a^2 - b^2##. Other than that, i think everything else is correct.


Homework Statement:: Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:: None.

Note that each prime divisor k of d must divide either 3, a or b.
Thus, we have that d∣[3a(a+b)-3ab] and d∣[3b(a+b)-3ab]
d) I don't think the first line implies the second, i.e., if a prime ##p## divides ##b## but not ##a## or ##3##, then we have ##p## doesn't divide ##3a(a+b) - 3ab##. However, the second line is true since ##d \vert (a+b)## and ##d \vert 3ab##. Other than that, and changing ##d \le 3## to ##d \vert 3##, it looks good to me.
 
  • #3
Math100
690
180
I revised this problem, can you please review/verify to see if it's correct this time?

Proof:
(a) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a-b).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a-b).
This means d##\mid##[(a+b)+(a-b)] and d##\mid##[(a+b)-(a-b)],
so we have d##\mid##2a and d##\mid##2b.
Note that d divides gcd(2a, 2b)=2 gcd(a, b).
Since gcd(a, b)=1, it follows that 2 gcd(a, b)=2(1)=2.
Thus, d##\mid##2, which implies that d=1 or d=2.
Therefore, gcd(a+b, a-b)=1 or 2.
(b) Suppose that gcd(a, b)=1.
Let d=gcd(2a+b, a+2b).
By definition of the greatest common divisor,
we have that d##\mid##(2a+b) and d##\mid##(a+2b).
This means d##\mid##[2(2a+b)-(a+2b)] and d##\mid##[-(2a+b)+2(a+2b)],
so we have d##\mid##3a and d##\mid##3b.
Note that d divides gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d##\mid##3, which implies that d=1 or d=3.
Therefore, gcd(2a+b, a+2b)=1 or 3.
(c) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}+b^{2}).
Since d##\mid##(a+b), we have d##\mid##(a+b)(a-b)=a^{2}-b^{2}.
This means d##\mid##[(a^{2}+b^{2})+(a^{2}-b^{2})] and d##\mid##[(a^{2}+b^{2})-(a^{2}-b^{2})],
so we have d##\mid##2a^{2} and d##\mid##2b^{2}.
Note that d divides gcd(2a^{2}, 2b^{2})=2 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 2 gcd(a^{2}, b^{2})=2(1)=2, and so d##\mid##2,
which implies that d=1 or d=2.
Therefore, gcd(a+b, a^{2}+b^{2})=1 or 2.
(d) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}-ab+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}-ab+b^{2}).
This means d##\mid##[(a+b)^{2}-(a^{2}-ab+b^{2})],
so we have d##\mid##3ab.
Now we have that d##\mid##[3a(a+b)-3ab] and d##\mid##[3b(a+b)-3ab],
so d##\mid##3a^{2} and d##\mid##3b^{2}.
Note that d divides gcd(3a^{2}, 3b^{2})=3 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 3 gcd(a^{2}, b^{2})=3(1)=3, and so d##\mid##3,
which implies that d=1 or d=3.
Therefore, gcd(a+b, a^{2}-ab+b^{2})=1 or 3.

I am so sorry for the late response of this problem. I was too busy in my workplace for the past two days. Now this problem is revised. Please leave any comment or feedback. I want to know if it's good or not.
 
  • Like
Likes fishturtle1
  • #4
fishturtle1
394
81
I revised this problem, can you please review/verify to see if it's correct this time?

Proof:
(a) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a-b).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a-b).
This means d##\mid##[(a+b)+(a-b)] and d##\mid##[(a+b)-(a-b)],
so we have d##\mid##2a and d##\mid##2b.
Note that d divides gcd(2a, 2b)=2 gcd(a, b).
Since gcd(a, b)=1, it follows that 2 gcd(a, b)=2(1)=2.
Thus, d##\mid##2, which implies that d=1 or d=2.
Therefore, gcd(a+b, a-b)=1 or 2.
(b) Suppose that gcd(a, b)=1.
Let d=gcd(2a+b, a+2b).
By definition of the greatest common divisor,
we have that d##\mid##(2a+b) and d##\mid##(a+2b).
This means d##\mid##[2(2a+b)-(a+2b)] and d##\mid##[-(2a+b)+2(a+2b)],
so we have d##\mid##3a and d##\mid##3b.
Note that d divides gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d##\mid##3, which implies that d=1 or d=3.
Therefore, gcd(2a+b, a+2b)=1 or 3.
(c) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}+b^{2}).
Since d##\mid##(a+b), we have d##\mid##(a+b)(a-b)=a^{2}-b^{2}.
This means d##\mid##[(a^{2}+b^{2})+(a^{2}-b^{2})] and d##\mid##[(a^{2}+b^{2})-(a^{2}-b^{2})],
so we have d##\mid##2a^{2} and d##\mid##2b^{2}.
Note that d divides gcd(2a^{2}, 2b^{2})=2 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 2 gcd(a^{2}, b^{2})=2(1)=2, and so d##\mid##2,
which implies that d=1 or d=2.
Therefore, gcd(a+b, a^{2}+b^{2})=1 or 2.
(d) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}-ab+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}-ab+b^{2}).
This means d##\mid##[(a+b)^{2}-(a^{2}-ab+b^{2})],
so we have d##\mid##3ab.
Now we have that d##\mid##[3a(a+b)-3ab] and d##\mid##[3b(a+b)-3ab],
so d##\mid##3a^{2} and d##\mid##3b^{2}.
Note that d divides gcd(3a^{2}, 3b^{2})=3 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 3 gcd(a^{2}, b^{2})=3(1)=3, and so d##\mid##3,
which implies that d=1 or d=3.
Therefore, gcd(a+b, a^{2}-ab+b^{2})=1 or 3.

I am so sorry for the late response of this problem. I was too busy in my workplace for the past two days. Now this problem is revised. Please leave any comment or feedback. I want to know if it's good or not.
No need to apologize; the proofs look correct to me.
 
  • #5
Math100
690
180
Thank you so much for the help!
 

Suggested for: Can anyone please review/verify my proofs for gcd problem?

Replies
5
Views
627
Replies
12
Views
497
Replies
5
Views
425
Replies
2
Views
441
Replies
7
Views
616
Replies
7
Views
590
Replies
2
Views
674
Replies
2
Views
469
Top