MHB Finding $|k|$ of the Polynomial $x^3-kx+25$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomial
AI Thread Summary
The polynomial \(x^3 - kx + 25\) has three real roots, with two roots summing to 5, leading to the conclusion that \(a = -5\). Using Vieta's formulas, it is determined that \(k = 20\) after substituting into the polynomial equation. An assumption that the other two roots are complex leads to a contradiction, reinforcing that all roots must be real. The calculations confirm that \(k = 20\) is the only valid solution. The discussion clarifies that there was a typographical error regarding the sign of \(k\), which has been corrected.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The polynomial $x^3-kx+25$ has three real roots. Two of these root sum to 5. What is $|k|$?
 
Mathematics news on Phys.org
[sp]
Let the roots be a, b, and c.

Then by Vieta's formula
a + b + c = 0

Take b + c = 5. Then a = -5,

So we know that
[math]a^3 - k a + 25 = 0[/math]

[math](-5)^3 - k ( -5 ) + 25 = 0[/math]

k = 20

Note that we haven't used the condition that all roots are real, so let's assume that b and c are complex and that this gives a contradiction.

We know that a = -5 and that b and c are, by assumption, complex. So let b = m + in and c = 5 - (m + in).

The other Vieta formula says that
abc = 25

$$(-5) ( m + in) ( 5 - (m + in) ) = 25$$

[math](-m^2 + 5m + n^2) + (5n - 2mn)i = -5[/math]

Using the second term
$$5n - 2mn = 0$$

So n = 0 or m = 5/2.

Let m = 5/2 and put it into the first term:
[math]-m^2 + 5m + n^2 = -5[/math]

[math]- \left ( \dfrac{5}{2} \right ) ^2 + 5 \left ( \dfrac{5}{2} \right ) + n^2 = -5[/math]

[math]n^2 = -\dfrac{45}{4}[/math]
which says that [math]n^2 < 0[/math], which is impossible.

Thus n = 0 and the solution for k = 20 stands as the only possible k.
[/sp]
-Dan
 
Above is good method and here is my
as $x^2$ term is zero and sum of 2 roots is 5 so $3^{rd}$ root is -5 so we have the product of 2 roots = 5 (as product of all roots -25)

$x^3-xk+25 = (x+5)(x^2- 5x + 5) = x^3 -5x^2+5x + 5x^2 - 25 x + 25 = x^3 -20x + 25$

comparing with given equation we have k = 20 and hence $| k | = 20$

we have to check that $x^2-5x+5=0$ is having real roots or not. We have discriminant = $5^2-20= 5 >0 $ so real roots

so ans 20
 
Last edited:
[sp]
There's a typo.

[math]x^3 - k x + 25 = x^3 - 20 x + 25 \implies k = 20[/math], not -20.
[/sp]
-Dan
 
topsquark said:
[sp]
There's a typo.

[math]x^3 - k x + 25 = x^3 - 20 x + 25 \implies k = 20[/math], not -20.
[/sp]
-Dan
Thanks I have done the needful in line for the flow
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top