MHB Finding Lebesgue Decomposition for a Measure Defined by an Integral

  • Thread starter Thread starter joypav
  • Start date Start date
  • Tags Tags
    Section
Click For Summary
SUMMARY

This discussion focuses on solving problems related to the Radon-Nikodym Theorem from Royden's Real Analysis. The first problem demonstrates that the measure defined by the series $\mu = \sum_{n=1}^{\infty} \frac{\mu_n}{2^n}$ is indeed a measure and that each $\mu_n$ is absolutely continuous with respect to $\mu$. The second problem addresses the Lebesgue decomposition of the measure $\nu$ defined by $\nu(E) = \int_{E} f d\mu$, confirming that $\nu$ is absolutely continuous with respect to $\mu$ and has no singular part. The discussions emphasize the importance of the monotone convergence theorem in justifying the interchange of summations.

PREREQUISITES
  • Understanding of the Radon-Nikodym Theorem
  • Knowledge of measure theory concepts such as absolute continuity
  • Familiarity with Lebesgue integration
  • Proficiency in applying the monotone convergence theorem
NEXT STEPS
  • Study the Radon-Nikodym Theorem in detail
  • Explore the properties of absolutely continuous measures
  • Learn about Lebesgue decomposition and its applications
  • Investigate the monotone convergence theorem and its implications in measure theory
USEFUL FOR

Students and professionals in mathematics, particularly those specializing in real analysis, measure theory, and functional analysis, will benefit from this discussion.

joypav
Messages
149
Reaction score
0
These are both problems from Royden's Real Analysis. Trying to get through the problems from the Radon-Nikodym Theorem section of the book.

Problem 1:
Let $(\mu_n)$ be a sequence of measures on a measurable space $(X, M)$ for which there is a constant $c>0$ such that $\mu_n(X)<c, \forall n$.
Define $\mu: M \rightarrow [0, \infty]$ by,

$\mu = \sum_{n=1}^{\infty} \frac{\mu_n}{2^n}$.

Show that $\mu$ is a measure on $M$ and that each $\mu_n$ is absolutely continuous with respect to $\mu$.

Solution:
Let $\lambda_n = \frac{\mu_n}{2^n}$.
Claim: $\lambda_n$ is a measure for every $n$
$\lambda_n(\emptyset) = \frac{\mu_n(\emptyset)}{2^n} = \frac{0}{2^n} = 0$

and

$\lambda_n(\cup_{i=1}^{\infty}A_i) = \frac{\mu_n(\cup_{i=1}^{\infty}A_i)}{2^n} = \frac{\sum_{i=1}^{\infty}\mu_n(A_i)}{2^n} = \sum_{i=1}^{\infty} \frac{\mu_n(A_i)}{2^n} = \sum_{i=1}^{\infty} \lambda_n(A_i)$
$\implies \lambda_n$ is a measure for every $n$

Then,
$\mu = \sum_{n=1}^{\infty} \lambda_n$

$\lambda_n(\emptyset) = 0, \forall n \implies \mu(\emptyset) = \sum_{n=1}^{\infty} \lambda_n(\emptyset) = \sum_{n=1}^{\infty} 0 = 0$

and

$\mu(\cup_{i=1}^{\infty} A_i) = \sum_{n=1}^{\infty} \lambda_n(\cup_{i=1}^{\infty} A_i) = \sum_{n=1}^{\infty}\sum_{i=1}^{\infty} \lambda_n(A_i) = \sum_{i=1}^{\infty}\sum_{n=1}^{\infty} \lambda_n(A_i) = \sum_{i=1}^{\infty} \mu(A_i)$
(I was thinking we could switch the order of the summations because each $\mu_n(A_i)<c$ so it's finite?)

I also need to show absolute continuity of each $\mu_n$ with respect to $\mu$.
For $A \in M$,
$\mu(A) = 0 \implies \sum_{n=1}^{\infty} \frac{\mu_n(A)}{2^n} = 0 \implies \mu_n(A) = 0, \forall n$
Because if any are nonzero then the sum would be $>0$?

Problem 2:
Let $(X, M, \mu)$ be a measure space and $f$ a non-negative function that is integrable over $X$ with respect to $\mu$. Find the Lebesgue decomposition with respect to $\mu$ of the measure $\nu$ defined by

$\nu(E) = \int_{E} f d\mu$, for $E \in M$.

Alright... this problem I really have no idea about. I was thinking at first to split $f$ into its positive and negative parts, but $f$ is non-negative.

Also, isn't $f$ actually $\frac{d\nu}{d\mu}$?
 
Physics news on Phys.org
Interchanging double series of nonnegative terms is justified by the monotone convergence theorem applied the counting measure on $\Bbb N$. The condition $\mu_n(X) < c$ for each $n$ is unnecessary unless one is to show that $\mu$ is a finite positive measure on $X$.

For the second problem, it's true that $f = \frac{d\nu}{d\mu}$ a.e. $[\mu]$, but you can simply note $\nu << \mu$, so that the absolutely continuous part of $\nu$ with respect to $\mu$ is $\nu$ itself; $\nu$ has no singular part with respect to $\mu$.
 
Last edited:
Euge said:
Interchanging double series of nonnegative terms is justified by the monotone convergence theorem applied the counting measure on $\Bbb N$. The condition $\mu_n(X) < c$ for each $n$ is unnecessary unless one is to show that $\mu$ is a finite positive measure on $X$.

For the second problem, it's true that $f = \frac{d\nu}{d\mu}$ a.e. $[\mu]$, but you can simply note $\nu << \mu$, so that the absolutely continuous part of $\nu$ with respect to $\mu$ is $\mu$ itself; $\nu$ has no singular part with respect to $\mu$.

Ahh okay, then it is as simple as $\nu = \nu_1 + \nu_2$, where $\nu_1=\nu$ and $\nu_2 \equiv 0$?
 
Yes, that's correct.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K