Finding Lebesgue Decomposition for a Measure Defined by an Integral

  • Context: MHB 
  • Thread starter Thread starter joypav
  • Start date Start date
  • Tags Tags
    Section
Click For Summary

Discussion Overview

The discussion revolves around problems related to the Radon-Nikodym Theorem, specifically focusing on the Lebesgue decomposition of measures defined by integrals. Participants explore the properties of measures, absolute continuity, and the conditions under which certain mathematical operations are valid.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents two problems from Royden's Real Analysis, seeking to establish the properties of a defined measure and its absolute continuity with respect to another measure.
  • Another participant argues that the condition $\mu_n(X) < c$ is unnecessary unless proving that $\mu$ is a finite positive measure on $X$.
  • For the second problem, a participant notes that the function $f$ is indeed the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ almost everywhere, and concludes that the absolutely continuous part of $\nu$ with respect to $\mu$ is $\nu$ itself, with no singular part.
  • A later reply suggests that the decomposition can be expressed simply as $\nu = \nu_1 + \nu_2$, where $\nu_1 = \nu$ and $\nu_2 \equiv 0$.

Areas of Agreement / Disagreement

Participants generally agree on the interpretation of the second problem regarding the Lebesgue decomposition, but there is some contention regarding the necessity of the condition $\mu_n(X) < c$ in the first problem. The discussion includes multiple viewpoints on the implications of the conditions set forth in the problems.

Contextual Notes

The discussion does not resolve the necessity of the condition $\mu_n(X) < c$ for establishing the properties of the measure $\mu$. There is also an assumption regarding the application of the monotone convergence theorem that is not explicitly detailed.

joypav
Messages
149
Reaction score
0
These are both problems from Royden's Real Analysis. Trying to get through the problems from the Radon-Nikodym Theorem section of the book.

Problem 1:
Let $(\mu_n)$ be a sequence of measures on a measurable space $(X, M)$ for which there is a constant $c>0$ such that $\mu_n(X)<c, \forall n$.
Define $\mu: M \rightarrow [0, \infty]$ by,

$\mu = \sum_{n=1}^{\infty} \frac{\mu_n}{2^n}$.

Show that $\mu$ is a measure on $M$ and that each $\mu_n$ is absolutely continuous with respect to $\mu$.

Solution:
Let $\lambda_n = \frac{\mu_n}{2^n}$.
Claim: $\lambda_n$ is a measure for every $n$
$\lambda_n(\emptyset) = \frac{\mu_n(\emptyset)}{2^n} = \frac{0}{2^n} = 0$

and

$\lambda_n(\cup_{i=1}^{\infty}A_i) = \frac{\mu_n(\cup_{i=1}^{\infty}A_i)}{2^n} = \frac{\sum_{i=1}^{\infty}\mu_n(A_i)}{2^n} = \sum_{i=1}^{\infty} \frac{\mu_n(A_i)}{2^n} = \sum_{i=1}^{\infty} \lambda_n(A_i)$
$\implies \lambda_n$ is a measure for every $n$

Then,
$\mu = \sum_{n=1}^{\infty} \lambda_n$

$\lambda_n(\emptyset) = 0, \forall n \implies \mu(\emptyset) = \sum_{n=1}^{\infty} \lambda_n(\emptyset) = \sum_{n=1}^{\infty} 0 = 0$

and

$\mu(\cup_{i=1}^{\infty} A_i) = \sum_{n=1}^{\infty} \lambda_n(\cup_{i=1}^{\infty} A_i) = \sum_{n=1}^{\infty}\sum_{i=1}^{\infty} \lambda_n(A_i) = \sum_{i=1}^{\infty}\sum_{n=1}^{\infty} \lambda_n(A_i) = \sum_{i=1}^{\infty} \mu(A_i)$
(I was thinking we could switch the order of the summations because each $\mu_n(A_i)<c$ so it's finite?)

I also need to show absolute continuity of each $\mu_n$ with respect to $\mu$.
For $A \in M$,
$\mu(A) = 0 \implies \sum_{n=1}^{\infty} \frac{\mu_n(A)}{2^n} = 0 \implies \mu_n(A) = 0, \forall n$
Because if any are nonzero then the sum would be $>0$?

Problem 2:
Let $(X, M, \mu)$ be a measure space and $f$ a non-negative function that is integrable over $X$ with respect to $\mu$. Find the Lebesgue decomposition with respect to $\mu$ of the measure $\nu$ defined by

$\nu(E) = \int_{E} f d\mu$, for $E \in M$.

Alright... this problem I really have no idea about. I was thinking at first to split $f$ into its positive and negative parts, but $f$ is non-negative.

Also, isn't $f$ actually $\frac{d\nu}{d\mu}$?
 
Physics news on Phys.org
Interchanging double series of nonnegative terms is justified by the monotone convergence theorem applied the counting measure on $\Bbb N$. The condition $\mu_n(X) < c$ for each $n$ is unnecessary unless one is to show that $\mu$ is a finite positive measure on $X$.

For the second problem, it's true that $f = \frac{d\nu}{d\mu}$ a.e. $[\mu]$, but you can simply note $\nu << \mu$, so that the absolutely continuous part of $\nu$ with respect to $\mu$ is $\nu$ itself; $\nu$ has no singular part with respect to $\mu$.
 
Last edited:
Euge said:
Interchanging double series of nonnegative terms is justified by the monotone convergence theorem applied the counting measure on $\Bbb N$. The condition $\mu_n(X) < c$ for each $n$ is unnecessary unless one is to show that $\mu$ is a finite positive measure on $X$.

For the second problem, it's true that $f = \frac{d\nu}{d\mu}$ a.e. $[\mu]$, but you can simply note $\nu << \mu$, so that the absolutely continuous part of $\nu$ with respect to $\mu$ is $\mu$ itself; $\nu$ has no singular part with respect to $\mu$.

Ahh okay, then it is as simple as $\nu = \nu_1 + \nu_2$, where $\nu_1=\nu$ and $\nu_2 \equiv 0$?
 
Yes, that's correct.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K