- #1
r731
- 40
- 6
This is the Riemann Zeta function ##Z(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}##. It equals 0 only at the negative integers on the real axis and numbers of form ##1/2+x i##.
The series can be expanded to this:
$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2 + xi}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}n^{xi}} = 0$$
I'm not sure what theorem (from real analysis) to apply to proceed.
<Moderator's note: please use the proper wrappers, ## ## and $$ $$, for LaTeX.>
The series can be expanded to this:
$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2 + xi}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}n^{xi}} = 0$$
I'm not sure what theorem (from real analysis) to apply to proceed.
<Moderator's note: please use the proper wrappers, ## ## and $$ $$, for LaTeX.>
Last edited by a moderator: