Finding $m+n+k$ Given $f(x)=x^4-29x^3+mx^2+nx+k$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the polynomial function $f(x)=x^4-29x^3+mx^2+nx+k$ and the conditions $f(5)=11$, $f(11)=17$, and $f(17)=23$. Participants are tasked with finding the sum of the coefficients $m+n+k$ based on these conditions.

Discussion Character

  • Homework-related

Main Points Raised

  • Some participants express initial confusion about the complexity of the problem, suggesting that it may be harder than it appears.
  • Others indicate that there are multiple methods to approach the problem, implying that different strategies may yield the same result.

Areas of Agreement / Disagreement

There is no clear consensus on the best approach to solve the problem, and participants have differing views on its complexity.

Contextual Notes

Participants have not fully resolved the mathematical steps required to find $m+n+k$, and there may be assumptions regarding the methods used that are not explicitly stated.

Who May Find This Useful

Readers interested in polynomial functions, problem-solving strategies in algebra, or those looking for collaborative approaches to mathematical challenges may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $f(x)=x^4-29x^3+mx^2+nx+k$, and $f(5)=11$, $f(11)=17$ and $f(17)=23$, find the sum of $m+n+k$.
 
Mathematics news on Phys.org
anemone said:
Given that $f(x)=x^4-29x^3+mx^2+nx+k$, and $f(5)=11$, $f(11)=17$ and $f(17)=23$, find the sum of $m+n+k$.

$f(5)=11 \Rightarrow 625-3625+25m+5n+k=11 \Rightarrow 25m+5n+k=3011$

$f(11)=17 \Rightarrow -23958+121m+11n+k=17 \Rightarrow 121m+11n+k=23975$

$f(17)=23 \Rightarrow -58956+289m+17n+k=23 \Rightarrow 289m+17n+k=58979$

From the relations $25m+5n+k=3011, 121m+11n+k=23975 \text{ and }289m+17n+k=58979$,we get that:

$k=-3734,m=195,n=374$

Therefore, the sum $m+n+k$ is equal to $-3165$ .
 
Last edited by a moderator:
we have f(x) = x+ 6 for x= 5 11 and 17

so f(x)= (x-5)(x-11)(X-17)Q(x) +x + 6
ax f(x) is a 4th oder polynomal so Q(x) = linear say x+ a
coefficient of $x^3 = - 29 = -5 - 11 - 17 + a$ so a = 4

so f(x) = (x-5)(x-11)(x-17)(x+4) + x + 6
put x = 1 to get
1- 29 + m + n + k = (-4) *(-10) *(-16) * 5 + 1 + 6 = - 3200 +7 = - 3193

or m + n + k = -3193 + 28 = - 3165
 
Well done, evinda and thanks for participating! :)

To be completely honest with you, I initially looked at this problem in a much more complicated way and hence I thought this problem is a hard one for certain.:o

- - - Updated - - -

kaliprasad said:
we have f(x) = x+ 6 for x= 5 11 and 17

so f(x)= (x-5)(x-11)(X-17)Q(x) +x + 6
ax f(x) is a 4th oder polynomal so Q(x) = linear say x+ a
coefficient of $x^3 = - 29 = -5 - 11 - 17 + a$ so a = 4

so f(x) = (x-5)(x-11)(x-17)(x+4) + x + 6
put x = 1 to get
1- 29 + m + n + k = (-4) *(-10) *(-16) * 5 + 1 + 6 = - 3200 +7 = - 3193

or m + n + k = -3193 + 28 = - 3165

Yes, that method works as well and thanks for participating, kali!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K