Finding Maclaurin series of a function

Click For Summary
SUMMARY

The discussion focuses on deriving the Maclaurin series for the function \( f(x) = (1 - x)^{- \frac{1}{2}} \) and calculating its derivatives. The first three derivatives are \( f'(x) ={- \frac{1}{2}} (1 - x)^{- \frac{3}{2}} \), \( f''(x) = { \frac{3}{4}} (1 - x)^{- \frac{5}{2}} \), and \( f'''(x) ={- \frac{15}{8}} (1 - x)^{- \frac{7}{2}} \). The coefficients of the series can be expressed as \( -\frac{1}{2}, \frac{3}{4}, -\frac{15}{8}, \) and generalized using the binomial coefficient for real numbers as \( \binom{-\frac{1}{2}}{n} \cdot n! \).

PREREQUISITES
  • Understanding of Maclaurin series and Taylor series expansion
  • Knowledge of derivatives and their computation
  • Familiarity with binomial coefficients and their generalization for real numbers
  • Basic algebraic manipulation of functions and series
NEXT STEPS
  • Study the derivation of Taylor series for different functions
  • Learn about the properties of binomial coefficients in calculus
  • Explore applications of Maclaurin series in solving differential equations
  • Investigate convergence criteria for power series
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in series expansions and their applications in mathematical analysis.

tmt1
Messages
230
Reaction score
0
I need to find the Maclaurin series for this function:

$$f(x) = (1 - x)^{- \frac{1}{2}}$$

And I need to find $f^n(a)$

First, I need the first few derivatives:

$$f'(x) ={- \frac{1}{2}} (1 - x)^{- \frac{3}{2}}$$

$$f''(x) ={ \frac{3}{4}} (1 - x)^{- \frac{5}{2}}$$

$$f'''(x) ={- \frac{15}{8}} (1 - x)^{- \frac{7}{2}}$$

So, I get something like $(1 - x)^{-(\frac{1}{2} + n)}$

but I don't know how to get an expression for the left coefficient.
 
Physics news on Phys.org
tmt said:
I need to find the Maclaurin series for this function:

$$f(x) = (1 - x)^{- \frac{1}{2}}$$

And I need to find $f^n(a)$

First, I need the first few derivatives:

$$f'(x) ={- \frac{1}{2}} (1 - x)^{- \frac{3}{2}}$$

$$f''(x) ={ \frac{3}{4}} (1 - x)^{- \frac{5}{2}}$$

$$f'''(x) ={- \frac{15}{8}} (1 - x)^{- \frac{7}{2}}$$

So, I get something like $(1 - x)^{-(\frac{1}{2} + n)}$

but I don't know how to get an expression for the left coefficient.

Hi tmt! ;)

Those coeffiecients are:
$$-\frac 1 2, \quad -\frac 12 \cdot -\frac 32, \quad -\frac 12 \cdot -\frac 32 \cdot -\frac 52, \quad ..., \quad
\underbrace{-\frac 12 \cdot -\frac 32 \cdot -\frac 52 \cdot ... \cdot -\frac n2}_{n\text{ factors}}
$$
Btw, it may be sufficient to simply specify them as:
$$-\frac 12, \frac 34, -\frac {15}8, \frac {105}{16}, ...$$

Taking it a step further, the generalization of the binomial coefficient for real numbers defines:
$$\binom{\alpha}{n} = \frac{\alpha \cdot (\alpha - 1) \cdot (\alpha - 2) \cdot ... \cdot (\alpha - n + 1)}{n!}
$$
So we can write them as:
$$\binom{-\frac 12}{n} \cdot n! = \underbrace{-\frac 12 \cdot -\frac 32 \cdot -\frac 52 \cdot ... \cdot -\frac n2}_{n\text{ factors}}
$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
6K