Finding MLE for $\theta$ of Statistical Product Model

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Function Likelihood
Click For Summary
SUMMARY

The discussion focuses on finding the maximum likelihood estimator (MLE) for the parameter $\theta$ in a discrete statistical product model with independent geometrically distributed random variables. The likelihood function is established as $$L_x(\theta)=\theta^n(1 -\theta)^{\sum_{i=1}^nx_i−n}$$. The MLE for $\theta$ is derived as $$\theta= \frac{n}{\sum_{i=1}^nx_i}$$, with a concrete example provided where $n=10$ and $\sum_{i=1}^nx_i=40$, yielding an estimated value of $\theta=0.25.

PREREQUISITES
  • Understanding of maximum likelihood estimation (MLE)
  • Familiarity with geometric distributions
  • Knowledge of logarithmic functions and their properties
  • Basic calculus, specifically differentiation
NEXT STEPS
  • Explore the properties of geometric distributions in depth
  • Learn about the derivation and application of log-likelihood functions
  • Study advanced maximum likelihood estimation techniques
  • Investigate statistical modeling using R or Python libraries
USEFUL FOR

Statisticians, data scientists, and researchers involved in statistical modeling and estimation, particularly those working with discrete data and likelihood functions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

For $n \in \mathbb{N}$ we consider the discrete statistical product model $(X ,(P_{\theta})_{\theta \in\Theta})$ with $X = \mathbb{N}^n$, $\Theta = (0, 1)$ and $p_{\theta}(x_i) = \theta(1 -\theta)^{x_i−1}$
for all $x_i \in \mathbb{N}, \theta \in \Theta$. So $n$ independent, identical experiments are carried out, the outcomes of which are modeled by independent, geometrically distributed random variables with an unknown probability of success $\theta$.
(a) Give the corresponding likelihood function.
(b) Determine an estimator for the parameter $\theta$ using the maximum likelihood method (for samples $x$ that do not consist only of ones). Note intermediate steps.
(c) You observe the following sample $x$: $$4 \ \ \ \ \ 2 \ \ \ \ \ 7 \ \ \ \ \ 4 \ \ \ \ \ 3 \ \ \ \ \ 1 \ \ \ \ \ 8 \ \ \ \ \ 2 \ \ \ \ \ 4 \ \ \ \ \ 5$$ Give the concrete estimated value for $\theta$ for $x$ using the estimator of part (b).I have done the following :

(a) The likelihood function is $$L_x(\theta)=\prod_{i\in \mathbb{N}}p_{\theta}(x_i)$$ or not? Can wecalculate that further or do we let that as it is?(b) We have to calculate the supremum of $L_x(\theta)$ as for $\theta$, right?

:unsure:
 
Physics news on Phys.org
Hi mathmari,

Nice job so far. Here are a few ideas to keep things moving along.

(a) The product should be for $1\leq i\leq n$. Using this fact and the formula for $p_{\theta}(x_{i})$, we can take your work a step further to obtain a closed-form expression for the likelihood.

(b) You will need to calculate the value of $\theta$ that maximizes the likelihood function from part (a), given the data $x_{i}$. This means the value of $\theta$ you calculate will depend on (i.e., be a function of) $x_{i}$. This can be done by differentiating with respect to $\theta$, setting this equal to zero and solving for $\theta.$ However, to make your life easier, I would strongly suggest taking the logarithm of the likelihood function before you calculate the value of $\theta$. Since the logarithm function is monotonic/order-preserving, the so-called "log-likelihood" function and the original likelihood function are maximized for the same value of $\theta$.

Feel free to let me know if anything remains unclear.
 
GJA said:
(a) The product should be for $1\leq i\leq n$. Using this fact and the formula for $p_{\theta}(x_{i})$, we can take your work a step further to obtain a closed-form expression for the likelihood.

We have that $$L_x(\theta)=\prod_{i=1}^np_{\theta}(x_i)=\prod_{i=1}^n \theta(1 -\theta)^{x_i−1}= \theta^n(1 -\theta)^{\sum_{i=1}^nx_i−n} $$

Is that correct? :unsure:
 
mathmari said:
We have that $$L_x(\theta)=\prod_{i=1}^np_{\theta}(x_i)=\prod_{i=1}^n \theta(1 -\theta)^{x_i−1}= \theta^n(1 -\theta)^{\sum_{i=1}^nx_i−n} $$

Is that correct? :unsure:

Exactly, nice job!

For part (b) you're trying to determine the value for $\theta$ that maximizes $L_{x}(\theta)$ for the given data $x_{i}$; i.e., you're thinking of the $x_{i}$ as fixed so that $L_{x}(\theta)$ is being considered as a function of $\theta$. Using the fact that $\ln\left[L_{x}(\theta)\right]$ and $L_{x}(\theta)$ are maximized for the same value of $\theta$ will make solving for $\theta$ less laborious. However you choose to proceed, taking a derivative, setting it equal to zero and solving for $\theta$ will produce the desired result.
 
GJA said:
For part (b) you're trying to determine the value for $\theta$ that maximizes $L_{x}(\theta)$ for the given data $x_{i}$; i.e., you're thinking of the $x_{i}$ as fixed so that $L_{x}(\theta)$ is being considered as a function of $\theta$. Using the fact that $\ln\left[L_{x}(\theta)\right]$ and $L_{x}(\theta)$ are maximized for the same value of $\theta$ will make solving for $\theta$ less laborious. However you choose to proceed, taking a derivative, setting it equal to zero and solving for $\theta$ will produce the desired result.

So we have \begin{align*}&g(\theta) = \ln \left (L_x(\theta)\right )=\ln \left (\theta^n(1 -\theta)^{\sum_{i=1}^nx_i−n}\right ) =\ln \left (\theta^n\right )+\ln \left ((1 -\theta)^{\sum_{i=1}^nx_i−n}\right )=n\cdot \ln \left (\theta\right )+\left ({\sum_{i=1}^nx_i−n}\right )\cdot \ln \left (1 -\theta\right )\\ &g'(\theta)=n\cdot \frac{1}{\theta}-\left ({\sum_{i=1}^nx_i−n}\right )\cdot \frac{1}{1 -\theta} \\ &g'(\theta)=0 \Rightarrow n\cdot \frac{1}{\theta}-\left ({\sum_{i=1}^nx_i−n}\right )\cdot \frac{1}{1 -\theta} =0 \Rightarrow n\cdot \frac{1}{\theta}=\left ({\sum_{i=1}^nx_i−n}\right )\cdot \frac{1}{1 -\theta} \Rightarrow n\cdot (1-\theta)=\left ({\sum_{i=1}^nx_i−n}\right )\cdot \theta\\ &\Rightarrow n-n\cdot \theta=\theta\cdot \sum_{i=1}^nx_i−n\cdot \theta\Rightarrow n=\theta\cdot \sum_{i=1}^nx_i \Rightarrow \theta= \frac{n}{\sum_{i=1}^nx_i}\end{align*} Is that correct and complete ? :unsure:

At (c) do we use $\theta= \frac{n}{\sum_{i=1}^nx_i}$ for $n=10$ and $\sum_{i=1}^nx_i=4 + 2 + 7 + 4 + 3 + 1 + 8+ 2 + 4 + 5=40$ ? :unsure:
 
mathmari said:
So we have \begin{align*}&g(\theta) = \ln \left (L_x(\theta)\right )=\ln \left (\theta^n(1 -\theta)^{\sum_{i=1}^nx_i−n}\right ) =\ln \left (\theta^n\right )+\ln \left ((1 -\theta)^{\sum_{i=1}^nx_i−n}\right )=n\cdot \ln \left (\theta\right )+\left ({\sum_{i=1}^nx_i−n}\right )\cdot \ln \left (1 -\theta\right )\\ &g'(\theta)=n\cdot \frac{1}{\theta}-\left ({\sum_{i=1}^nx_i−n}\right )\cdot \frac{1}{1 -\theta} \\ &g'(\theta)=0 \Rightarrow n\cdot \frac{1}{\theta}-\left ({\sum_{i=1}^nx_i−n}\right )\cdot \frac{1}{1 -\theta} =0 \Rightarrow n\cdot \frac{1}{\theta}=\left ({\sum_{i=1}^nx_i−n}\right )\cdot \frac{1}{1 -\theta} \Rightarrow n\cdot (1-\theta)=\left ({\sum_{i=1}^nx_i−n}\right )\cdot \theta\\ &\Rightarrow n-n\cdot \theta=\theta\cdot \sum_{i=1}^nx_i−n\cdot \theta\Rightarrow n=\theta\cdot \sum_{i=1}^nx_i \Rightarrow \theta= \frac{n}{\sum_{i=1}^nx_i}\end{align*} Is that correct and complete ? :unsure:

At (c) do we use $\theta= \frac{n}{\sum_{i=1}^nx_i}$ for $n=10$ and $\sum_{i=1}^nx_i=4 + 2 + 7 + 4 + 3 + 1 + 8+ 2 + 4 + 5=40$ ? :unsure:

You're correct on everything; great job!
 
Here is a plot of the likelihood function for part (c), where $n=10$ and $\sum_{i}x_{i} = 40$. As you can see, it's maximized for $\theta=0.25$, as it should be from your derivation in part (b).

Likelihood_Function_Plot.png
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K