MHB Finding Moments of $X\sim N(0,1)$ using MGF

  • Thread starter Thread starter Jason4
  • Start date Start date
  • Tags Tags
    Moments
Click For Summary
The moment generating function (MGF) for the standard normal distribution \(X \sim N(0,1)\) is derived as \(M_X(s) = e^{s^2/2}\). The first two moments calculated are \(E[X] = 0\) and \(E[X^2] = 1\), with higher moments showing that odd moments are zero and even moments follow a specific pattern: \(E[X^{EVEN}] = \{1, 3, 15, 105, 945, \ldots\}\). The relationship \(E[X^k] = M_X^{(k)}(0)\) is confirmed, where \(M_X^{(k)}(0)\) represents the \(k\)-th derivative of the MGF evaluated at zero. The discussion emphasizes the need for a clear proof of this relationship and the calculation of moments using the MGF.
Jason4
Messages
27
Reaction score
0
I have to find the moment generating function and find all the moments of $X\sim N(0,1)$

For the MGF, I have:

$M_X(s)=\displaystyle\int_{-\infty}^{\infty}e^s\frac{e^{x^2/2}}{\sqrt{2\pi}}\,dx = \ldots=e^{s^2/2}$

Next I found that:

$M'_X(0)=E[X]=0$

$M''_X(0)=E[X^2]=1$

$E[X^3]=0$

$E[X^4]=3$

$\ldots$

$E[X^{ODD}]=\{0\}$

$E[X^{EVEN}]=\{1,3,15,105,945,\ldots\}$

Is it enough to write:

$E[X^k]=M_X^{(k)}(0)=\frac{d^k}{ds^k}e^{s^2/2}$

Am I totally off track here? How would I prove this?
 
Last edited:
Physics news on Phys.org
Jason said:
I have to find the moment generating function and find all the moments of $X\sim N(0,1)$

For the MGF, I have:

$M_X(s)=\displaystyle\int_{-\infty}^{\infty}e^s\frac{e^{x^2/2}}{\sqrt{2\pi}}\,dx = \ldots=e^{s^2/2}$

Next I found that:

$M'_X(0)=E[X]=0$

$M''_X(0)=E[X^2]=1$

$E[X^3]=0$

$E[X^4]=3$

$\ldots$

$E[X^{ODD}]=\{0\}$

$E[X^{EVEN}]=\{1,3,15,105,945,\ldots\}$

Is it enough to write:

$E[X^k]=M_X^{(k)}(0)=\frac{d^k}{ds^k}e^{s^2/2}$

Am I totally off track here? How would I prove this?

Th \(k\)-th moment is \(k!\) times coefficient of \(s^k\) in the MacLauren series expansion of the MGF.

CB
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K