I Finding Normalization Constants for a Set of Energy Eigenstates

jaurandt
Messages
24
Reaction score
0
I do not know what I'm doing wrong but I'm working on the problem of finding the normalization constants for the energy eigenstate equation for a 1D plane wave that is traveling from the left into a potential barrier where E < V at the barrier. This is from Allan Adams' Lecture 12 of his 2013 Quantum Physics 1 lectures.

The system of equations left at x = 0 is

A + B = D
ikA - ikB = -aD (for the derivatives)

And he wrote that

D = (2k)/(k + ia)

and

B = (k - ia)/(k + ia)

He said we can "invert" the original equations to get those. After many attempts, I can't figure it out. Can someone please guide me along before I pull all of my hair out?
 
Physics news on Phys.org
jaurandt said:
A + B = D
ikA - ikB = -aD (for the derivatives)
I think "invert" probably refers to matrix inversion.
You have two equations and three unknowns here. That means that the system of equations has an infinite number of solutions. You could find a solution by considering A to be a parameter and solving for B and D in terms of A (treating A like a constant). Then you can set A to whatever constant value you choose (1 for example) to get corresponding values for B and D.
 
First of all, the normalization constants on both sides of the potential step have to be such that the wavefunction doesn't have a jump discontinuity at the beginning of the barrier. But that only determines the relative magnitudes of the two constants.

Unbound plane wave states are not normalized in the same way as bound states where the normalization makes the total probability of finding the particle to be 1. Maybe the correct way to set the normalization is one where the pre-factor before the barrier (when ##V=0##) is the ##1/\sqrt{2\pi \hbar}##, as in the link below.

https://quantummechanics.ucsd.edu/ph130a/130_notes/node138.html
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top