MHB Finding Partial Derivatives with Transformations

Click For Summary
The discussion focuses on finding partial derivatives using transformations defined by variables ξ and η in terms of x and y. The initial equations for the first and second partial derivatives are presented, but the user encounters confusion while applying the product and chain rules. A correction is made to the second derivative calculation, leading to a more detailed expression involving mixed and second derivatives of f with respect to ξ and η. Ultimately, the discussion highlights the complexity of applying transformation rules in multivariable calculus, particularly when transitioning between different variable sets. The conversation illustrates the importance of careful application of calculus rules in deriving accurate expressions for derivatives.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)

Having the transformations:
$$\xi=\xi(x,y), \eta=\eta(x,y)$$

I want to find the following partial derivatives:
$$\frac{\partial}{\partial{x}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}=\partial_{\xi} \xi_x+\partial_{\eta} \eta_x$$

$$\frac{\partial}{\partial{y}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{y}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{y}}=\partial_{\xi} \xi_y+\partial_{\eta} \eta_y$$

$$\frac{\partial^2}{\partial{x^2}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}$$
I got stuck...How can I continue??
 
Physics news on Phys.org
evinda said:
Hello! :)

Having the transformations:
$$\xi=\xi(x,y), \eta=\eta(x,y)$$

I want to find the following partial derivatives:
$$\frac{\partial}{\partial{x}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}=\partial_{\xi} \xi_x+\partial_{\eta} \eta_x$$

$$\frac{\partial}{\partial{y}}= \frac{\partial}{ \partial{\xi}} \frac{\partial{\xi}}{\partial{y}}+\frac{\partial}{\partial{\eta}} \frac{\partial{\eta}}{\partial{y}}=\partial_{\xi} \xi_y+\partial_{\eta} \eta_y$$

$$\frac{\partial^2}{\partial{x^2}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}}=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}} \frac{\partial{\xi}}{\partial{x}}+\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\eta}} \frac{\partial{\eta}}{\partial{x}}$$
I got stuck...How can I continue??

Hey! (Mmm)

How about this (correcting a small mistake):
\begin{aligned}
\frac{\partial^2}{\partial{x^2}}

&=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}} \\

&=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\xi}}
\frac{\partial{\xi}}{\partial{x}}
+ \frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\eta}}
\frac{\partial{\eta}}{\partial{x}} \\

&=(\partial_{\xi\xi} \xi_x + \partial_{\xi\eta} \eta_x) \xi_x + \partial_\xi \xi_{xx}
+ (\partial_{\eta\xi} \xi_x+\partial_{\eta\eta} \eta_x) \eta_x + \partial_\eta \eta_{xx}\\

\end{aligned}
 
I like Serena said:
Hey! (Mmm)

How about this (correcting a small mistake):
\begin{aligned}
\frac{\partial^2}{\partial{x^2}}

&=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{x}} \\

&=\frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\xi}}
\frac{\partial{\xi}}{\partial{x}}
+ \frac{\partial{(\partial_{\xi} \xi_x+\partial_{\eta} \eta_x})}{\partial{\eta}}
\frac{\partial{\eta}}{\partial{x}} \\

&=(\partial_{\xi\xi} \xi_x+\partial_{\xi\eta} \eta_x) \xi_x
+ (\partial_{\eta\xi} \xi_x+\partial_{\eta\eta} \eta_x) \eta_x \\

\end{aligned}

According to my textbook it is like that:
$$\frac{\partial^2}{\partial{x^2}}=\frac{\partial{(\xi_x \partial_{\xi}+\eta_x \partial_{\eta})}}{\partial{x}}=\xi_{xx} \partial_{\xi}+\xi_x \partial_x \partial_{\xi}+\eta_{xx} \partial_{\eta}+\eta_x \partial_x \partial_{\eta}$$
Why is it so? :confused:
 
evinda said:
According to my textbook it is like that:
$$\frac{\partial^2}{\partial{x^2}}=\frac{\partial{(\xi_x \partial_{\xi}+\eta_x \partial_{\eta})}}{\partial{x}}=\xi_{xx} \partial_{\xi}+\xi_x \partial_x \partial_{\xi}+\eta_{xx} \partial_{\eta}+\eta_x \partial_x \partial_{\eta}$$
Why is it so? :confused:

Let's apply the sum rule and the product rule:
\begin{aligned}
\frac{\partial{(\xi_x \partial_{\xi}+\eta_x \partial_{\eta})}}{\partial{x}}

&= \frac{\partial(\xi_x \partial_{\xi})}{\partial{x}} + \frac{\partial(\eta_x \partial_{\eta})}{\partial{x}} \\

&= \xi_{xx} \partial_{\xi} + \xi_x \partial_x\partial_\xi
+ \eta_{xx} \partial_{\eta} + \eta_x \partial_x\partial_\eta\\

\end{aligned}
I worked it out completely, but apparently that is not what was asked! :eek:
Ah well, since I have already written it, I'll leave it here.

So let's suppose we have a function $f(\xi, \eta)$.

Then:
$$\frac{\partial f}{\partial x}
= \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x}
+ \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x}$$

Applying both the chain rule and the product rule:
\begin{aligned}
\frac{\partial^2 f}{\partial x^2}

&= \frac{\partial}{\partial x}
\left( \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x}
+ \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x} \right) \\

&= \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial \xi} \right)
\frac{\partial \xi}{\partial x}
+ \frac{\partial f}{\partial \xi}
\frac{\partial}{\partial x}\left( \frac{\partial \xi}{\partial x} \right )

+ \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial \eta} \right)
\frac{\partial \eta}{\partial x}
+ \frac{\partial f}{\partial \eta}
\frac{\partial}{\partial x}\left( \frac{\partial \eta}{\partial x} \right) \\

&= \left( \frac{\partial^2 f}{\partial \xi^2}\frac{\partial \xi}{\partial x}
+ \frac{\partial^2 f}{\partial\eta\partial\xi}\frac{\partial \eta}{\partial x} \right)
\frac{\partial \xi}{\partial x}

+ \frac{\partial f}{\partial \xi}
\frac{\partial^2 \xi}{\partial x^2}

+ \left( \frac{\partial^2 f}{\partial \xi\partial\eta} \frac{\partial \xi}{\partial x}
+ \frac{\partial^2 f}{\partial \eta^2} \frac{\partial \eta}{\partial x} \right)
\frac{\partial \eta}{\partial x}

+ \frac{\partial f}{\partial \eta}
\frac{\partial^2 \eta}{\partial x^2} \\

&= f_{\xi\xi}\xi_x^2 + f_{\eta\xi}\eta_x\xi_x
+ f_\xi \xi_{xx}
+ f_{\xi\eta} \xi_x\eta_x + f_{\eta\eta} \eta_x^2
+ f_\eta \eta_{xx} \\

&= f_{\xi\xi}\xi_x^2 + 2 f_{\eta\xi}\eta_x\xi_x + f_{\eta\eta} \eta_x^2
+ f_\xi \xi_{xx} + f_\eta \eta_{xx} \\

&= \left(\ \xi_x^2\partial_\xi\partial_\xi + 2 \eta_x\xi_x\partial_\eta\partial_\xi
+ \eta_x^2 \partial_\eta\partial_\eta
+ \xi_{xx}\partial_\xi + \eta_{xx}\partial_\eta \ \right)\ f \\

\end{aligned}
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K