Finding particular solution to recurrence relation

Click For Summary

Discussion Overview

The discussion revolves around finding particular solutions to recurrence relations, specifically focusing on the equation an+2 = -4an + 8n2n. Participants explore the process of determining the general solution and the appropriate form for the particular solution.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant begins by identifying the roots of the characteristic polynomial as r1 = 2i and r2 = -2i, leading to a general solution of an(h) = 2n*(αcos(πn/2) + βsin(πn/2)).
  • Another participant questions the suggested form for the particular solution, (An+B)2n, expressing confusion over its appropriateness.
  • A later reply references a tutorial that illustrates a procedure for tackling such problems, mentioning a relation γn = 8n2n and deriving w_n = 8 2n(χ0 + χ1 n).
  • Concerns are raised regarding the caution advised in the linked post about using a table for particular solutions, particularly if the sequences are solutions to the homogeneous equation.
  • Participants discuss whether the derived particular solution w_n = 8 2n(χ0 + χ1 n) is indeed a solution to the homogeneous equation, with one participant asserting that it is not.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the appropriateness of the particular solution form and whether it conflicts with the homogeneous solution. There is no consensus on the best approach to finding the particular solution, and the discussion remains unresolved.

Contextual Notes

Participants highlight the importance of ensuring that the proposed particular solution does not overlap with the solutions of the homogeneous equation, indicating a potential limitation in the approach discussed.

vincentvance
Messages
8
Reaction score
0
Hi,

I have a question about how to find the particular solutions when trying to solve recurrence relations. For example, trying to solve

an+2 = -4an + 8n2n ,

I begin with finding the roots in the characteristic polynomial associated with the homogeneous equation, so r1 = 2i and r2 = -2i.

Then, because the roots are complex, the general solution is

an(h) = 2n*(αcos(πn/2) + βsin(πn/2)).Now, my textbook suggests trying a function of the form

(An+B)2n

when trying to find the particual solution. I don't understand why and I have come across a couple of other examples which have made me equally confused as I am this time. Could anyone shed some light on the matter?
 
Last edited:
Physics news on Phys.org
vincentvance said:
Hi,

I have a question about how to find the particular solutions when trying to solve recurrence relations. For example, trying to solve

an+2 = -4an + 8n2n ,

I begin with finding the roots in the characteristic polynomial associated with the homogeneous equation, so r1 = 2i and r2 = -2i.

Then, because the roots are complex, the general solution is

an(h) = 2n*(αcos(πn/2) + βsin(πn/2)).Now, my textbook suggests trying a function of the form

(An+B)2n

when trying to find the particural solution. I don't understand why and I have come across a couple of other examples which have made me equally confused as I am this time. Could anyone shed some light on the matter?

The procedure to 'attack' this type of problem is illustrated in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-ii-860.html#post4671

Using the 'useful table' You arrive to the following relation...

$\displaystyle \gamma_{n}= 8\ n\ 2^{n} \implies w_{n} = 8\ 2^{n}\ (\chi_{0} + \chi_{1}\ n)\ (1)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The procedure to 'attack' this type of problem is illustrated in...

http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-ii-860.html#post4671

Using the 'useful table' You arrive to the following relation...

$\displaystyle \gamma_{n}= 8\ n\ 2^{n} \implies w_{n} = 8\ 2^{n}\ (\chi_{0} + \chi_{1}\ n)\ (1)$

Kind regards

$\chi$ $\sigma$

Thank you!

In the post you linked it says "Some caution is to be adopted using the table 2.1 because the $w_n$ are valid only if the sequences themselves aren’t solution of the homogeneous DE and if that is the case a different procedure must be adopted."

Isn't the sequence a solution to the homogeneous equation in this example because the general solution is a product with $2^n$
 
vincentvance said:
Thank you!

In the post you linked it says "Some caution is to be adopted using the table 2.1 because the $w_n$ are valid only if the sequences themselves aren’t solution of the homogeneous DE and if that is the case a different procedure must be adopted."

Isn't the sequence a solution to the homogeneous equation in this example because the general solution is a product with $2^n$

The homogeneous equation is...

$\displaystyle a_{n+2} + 4\ a_{n} = 0\ (1)$

... and its solution is...

$\displaystyle a_{n} = 2^{n}\ \{ c_{0}\ i^{n} + c_{1}\ (- i)^{n}\}\ (2)$

The particular solution we have found is...

$\displaystyle w_{n} = 8\ 2^{n}\ (\chi_{0} + \chi_{1}\ n)\ (3)$

... and (3) is not a solution of (1)...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
The homogeneous equation is...

$\displaystyle a_{n+2} + 4\ a_{n} = 0\ (1)$

... and its solution is...

$\displaystyle a_{n} = 2^{n}\ \{ c_{0}\ i^{n} + c_{1}\ (- i)^{n}\}\ (2)$

The particular solution we have found is...

$\displaystyle w_{n} = 8\ 2^{n}\ (\chi_{0} + \chi_{1}\ n)\ (3)$

... and (3) is not a solution of (1)...

Kind regards

$\chi$ $\sigma$

Oh, I actually think I get it now. Thank you for your patience!
 

Similar threads

Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K