Finding Perfect Square Combinations: $m,n\in N$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Combinations Square
Click For Summary

Discussion Overview

The discussion revolves around finding natural numbers \( m \) and \( n \) such that \( n < m \), with specific conditions: \( 1000 \leq m < 2011 \), \( m - n = p^k \) where \( p \) is a prime and \( k \in \{0, 1, 2\} \), and the product \( m \times n \) is a perfect square. The focus is on identifying all possible values of \( m \).

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Participants discuss the constraints on \( m \) and \( n \) based on the given conditions.
  • There is a mention of the need for \( m \times n \) to be a perfect square, which implies certain relationships between \( m \) and \( n \).
  • Some participants suggest exploring the implications of \( m - n = p^k \) for different primes \( p \) and values of \( k \).
  • One participant indicates a need for a basis for the solution, implying that further exploration or foundational work is necessary.

Areas of Agreement / Disagreement

There appears to be no consensus yet, as the discussion is in its early stages and participants are still raising points and clarifying the problem.

Contextual Notes

The discussion does not yet address specific methods for finding \( m \) and \( n \), nor does it resolve how the conditions interact with each other.

Albert1
Messages
1,221
Reaction score
0
$m,n\in N ,n<m $
given :
$(1)1000\leq m<2011$
$(2) m-n=p^k$ here $p$ is a prime, and $k$$\in\{0,1,2\}$
$(3)m\times n $ is a perfect square number , find all possibe $m$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$m,n\in N ,n<m $
given :
$(1)1000\leq m<2011$
$(2) m-n=p^k$ here $p$ is a prime, and $k$$\in\{0,1,2\}$
$(3)m\times n $ is a perfect square number , find all possibe $m$
k cannot be zero. because

$x(x+1)$ for integer x >0 is between $x^2$ and $(x+1)^2$ and not perfect square
p cannot be 2 because then we have
$x(x+2)= (x+1)^2-1$ not a perfect square
$x(x+4) = (x+2)^2-4$ not a perfect square
so we have p is odd and now for power 1

$m$ and $m-p$ one is odd and another is even and both have to be perfect square
if not then $m = xa^2$ and $n = xb^2$ and $m-n = x(a^2-b^2)$ not a prime unless x = 1
so both are perfect square.
m and m-p have to be square of consecutive numbers else a^2-b^2 = (a-b)(a+b) is not prime
so m is value x then $2x-1$ is prime
$1000 < 32^2$ and $2000 > 44^2$
so we look for 2 * 32-1 to 2 * 44 -1 to be prime.
they are $67(m= 34^2),71(m=36^2), 73(m= 37^2),79(m= 40^2),83(m=44^2)$

now take the case of $p^2$
there are 2 cases
m and n both are consecutive squares
$p^2$ is between 61 and 88
but there is no p

there are 2nd case that is p is factor of m and n
$n = a^2p$ and $m=b^2p$
and $b^2-a^2$ is divisible by p.
we see by checking the value $m=1900$
 
kaliprasad said:
k cannot be zero. because

$x(x+1)$ for integer x >0 is between $x^2$ and $(x+1)^2$ and not perfect square
p cannot be 2 because then we have
$x(x+2)= (x+1)^2-1$ not a perfect square
$x(x+4) = (x+2)^2-4$ not a perfect square
so we have p is odd and now for power 1

$m$ and $m-p$ one is odd and another is even and both have to be perfect square
if not then $m = xa^2$ and $n = xb^2$ and $m-n = x(a^2-b^2)$ not a prime unless x = 1
so both are perfect square.
m and m-p have to be square of consecutive numbers else a^2-b^2 = (a-b)(a+b) is not prime
so m is value x then $2x-1$ is prime
$1000 < 32^2$ and $2000 > 44^2$
so we look for 2 * 32-1 to 2 * 44 -1 to be prime.
they are $67(m= 34^2),71(m=36^2), 73(m= 37^2),79(m= 40^2),83(m=44^2)$

now take the case of $p^2$
there are 2 cases
m and n both are consecutive squares
$p^2$ is between 61 and 88
but there is no p

there are 2nd case that is p is factor of m and n
$n = a^2p$ and $m=b^2p$
and $b^2-a^2$ is divisible by p.
we see by checking the value $m=1900$
m=1156,1296,1369,1600,1764 (k=1)
m=1377,1900 (k=2)
you miss 1377
 
Albert said:
m=1156,1296,1369,1600,1764 (k=1)
m=1377,1900 (k=2)
you miss 1377

right

I missed $1377 = 17 * 81 = 17 * 9^2= 17 * (\frac{17+1}{2})^2$
I got $1900 = 19 * 100 = 19 * (\frac{19+1}{2})^2$

basis for solution
for the case k= 2 we have
$m= pa^2$ and $n=n-p^2= pb^2$
and $a^2-b^2=(a-b)(a+b)$ is p so
a-b = 1
a+b = p
or
$m= p(\frac{p+1}{2})^2$
as an estmiate
now m = 1000 gives $p > 15$
m = 2011 given $p < 21$
so p = 17 or 19 and hence the result
 

Similar threads

Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K