MHB Finding Perfect Squares with $n^4 + 33$

  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Squares
magneto1
Messages
100
Reaction score
0
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.
 
Mathematics news on Phys.org
magneto said:
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.

let $x^2 = n^4+ 33$

so $33 = (x^2-n^4) = (x+n^2)(x-n^2)$ = $33*1$= $11*3$

gives 2 solutions to be checked

$x+n^2= 33$ and $x-n^2= 1$ => $x= 17$ and $n^2 = 16$ which is a perfect square so n = 4

or

$x+n^2= 11$ and $x-n^2= 3$ => $x= 7$ and $n^2 = 4$ which is a perfect square so n = 2

so we get $2^4 + 33 = 49= 7^2$

and $4^4 + 33 = 289= 17^2$

n = 2 or 4
 
Nicely done.
 
Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.
 
Bacterius said:
Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.

as 33 is 1 mod 4, n has to be even because $n^4+33$ cannot be 2 mod 4, so we need not check for odd n so check for 0,2,4 only
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top