Finding Perfect Squares with $n^4 + 33$

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Squares
Click For Summary

Discussion Overview

The discussion revolves around identifying all positive integers \( n \) such that the expression \( n^4 + 33 \) results in a perfect square. The focus is on providing a proof for the findings.

Discussion Character

  • Homework-related

Main Points Raised

  • Post 1 presents the initial problem statement, asking for a proof regarding the integers \( n \).
  • Post 2 reiterates the same problem statement, suggesting a possible emphasis on clarity or a different approach.
  • Post 3 offers a brief acknowledgment of a previous contribution, though it does not elaborate on any specific points or claims.

Areas of Agreement / Disagreement

The discussion does not appear to have reached any consensus, as it primarily consists of repeated problem statements and a single acknowledgment without further elaboration or debate.

Contextual Notes

The posts do not provide any assumptions, definitions, or mathematical steps that could clarify the context of the problem or the nature of the proofs sought.

Who May Find This Useful

Individuals interested in number theory, particularly those exploring properties of integers and perfect squares, may find this discussion relevant.

magneto1
Messages
100
Reaction score
0
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.
 
Mathematics news on Phys.org
magneto said:
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.

let $x^2 = n^4+ 33$

so $33 = (x^2-n^4) = (x+n^2)(x-n^2)$ = $33*1$= $11*3$

gives 2 solutions to be checked

$x+n^2= 33$ and $x-n^2= 1$ => $x= 17$ and $n^2 = 16$ which is a perfect square so n = 4

or

$x+n^2= 11$ and $x-n^2= 3$ => $x= 7$ and $n^2 = 4$ which is a perfect square so n = 2

so we get $2^4 + 33 = 49= 7^2$

and $4^4 + 33 = 289= 17^2$

n = 2 or 4
 
Nicely done.
 
Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.
 
Bacterius said:
Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.

as 33 is 1 mod 4, n has to be even because $n^4+33$ cannot be 2 mod 4, so we need not check for odd n so check for 0,2,4 only
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
8K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
5
Views
2K