magneto1
- 100
- 0
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.
magneto said:Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.
Bacterius said:Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.