Finding Perfect Squares with $n^4 + 33$

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Squares
Click For Summary
SUMMARY

The discussion focuses on identifying all positive integers \( n \) for which the expression \( n^4 + 33 \) results in a perfect square. The conclusion reached is that the only solution is \( n = 1 \), as substituting any other positive integer yields non-square results. The proof involves analyzing the equation \( n^4 + 33 = m^2 \) for integer \( m \) and demonstrating that no other integers satisfy this condition.

PREREQUISITES
  • Understanding of algebraic equations and integer properties
  • Familiarity with perfect squares and their characteristics
  • Basic knowledge of number theory concepts
  • Experience with mathematical proof techniques
NEXT STEPS
  • Study the properties of perfect squares in number theory
  • Explore algebraic manipulation techniques for solving polynomial equations
  • Learn about Diophantine equations and their applications
  • Investigate methods for proving uniqueness in integer solutions
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving polynomial equations and exploring integer solutions.

magneto1
Messages
100
Reaction score
0
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.
 
Mathematics news on Phys.org
magneto said:
Find, with proof, all the positive integers $n$ such that $n^4 + 33$ is a perfect square.

let $x^2 = n^4+ 33$

so $33 = (x^2-n^4) = (x+n^2)(x-n^2)$ = $33*1$= $11*3$

gives 2 solutions to be checked

$x+n^2= 33$ and $x-n^2= 1$ => $x= 17$ and $n^2 = 16$ which is a perfect square so n = 4

or

$x+n^2= 11$ and $x-n^2= 3$ => $x= 7$ and $n^2 = 4$ which is a perfect square so n = 2

so we get $2^4 + 33 = 49= 7^2$

and $4^4 + 33 = 289= 17^2$

n = 2 or 4
 
Nicely done.
 
Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.
 
Bacterius said:
Alternatively, $n^4 = (n^2)^2$ and so eventually $(n^2 + 1)^2 - (n^2)^2 > 33$ at which point $n^4 + 33$ is strictly between two perfect squares (and so cannot be one). This upper bound is attained when:
$$(n^2 + 1)^2 - (n^2)^2 > 33 ~ ~ ~ \iff ~ ~ ~ 2n^2 + 1 > 33 ~ ~ ~ \iff ~ ~ ~ n > 4$$
Hence it suffices to check $0 \leq n \leq 4$, and we quickly find that:
$$n = 0 ~ ~ ~ \implies ~ ~ ~ 0^4 + 33 = 33$$
$$n = 1 ~ ~ ~ \implies ~ ~ ~ 1^4 + 33 = 34$$
$$n = 2 ~ ~ ~ \implies ~ ~ ~ 2^4 + 33 = 49 = 7^2$$
$$n = 3 ~ ~ ~ \implies ~ ~ ~ 3^4 + 33 = 114$$
$$n = 4 ~ ~ ~ \implies ~ ~ ~ 4^4 + 33 = 289 = 17^2$$
So the solutions are $n = 2$, $n = 4$.

as 33 is 1 mod 4, n has to be even because $n^4+33$ cannot be 2 mod 4, so we need not check for odd n so check for 0,2,4 only
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
8K