MHB Finding $q$ in a Polynomial with Negative Integer Roots

Click For Summary
The discussion revolves around finding the value of $q$ in the polynomial $P(x)=x^4+mx^3+nx^2+px+q$, given that all roots are negative integers and the sum of the coefficients $m+n+p+q=2009$. Participants express appreciation for each other's solutions and engage in light conversation about sharing more math problems. The focus remains on the mathematical challenge presented by the polynomial and its constraints. The conversation highlights collaboration and problem-solving within the mathematical community.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $P(x)=x^4+mx^3+nx^2+px+q$ is a polynomial whose roots are all negative integers, and given that $m+n+p+q=2009$, find $q$.
 
Mathematics news on Phys.org
anemone said:
If $P(x)=x^4+mx^3+nx^2+px+q$ is a polynomial whose roots are all negative integers, and given that $m+n+p+q=2009$, find $q$.

Hello.

For my system:http://mathhelpboards.com/number-theory-27/polynomials-roots-10020.html

Let \ x_1, \ x_2, \ x_3, \ x_4: \ roots \ of \ P(x) \rightarrow{}1+m+n+p+q=2010

2010= Term independent from the polynomial, from roots: x_1-1, \ x_2-1, \ x_3-1, \ x_4-1

2010=2*3*5*67 \rightarrow{} x_1=-1, \ x_2=-2, \ x_3=-4, \ x_4=-66

P(x)=x^4+73x^3+476x^2+932x+528

Therefore:

q=528

Regards.
 
mente oscura said:

Hello.

For my system:http://mathhelpboards.com/number-theory-27/polynomials-roots-10020.html

Let \ x_1, \ x_2, \ x_3, \ x_4: \ roots \ of \ P(x) \rightarrow{}1+m+n+p+q=2010

2010= Term independent from the polynomial, from roots: x_1-1, \ x_2-1, \ x_3-1, \ x_4-1

2010=2*3*5*67 \rightarrow{} x_1=-1, \ x_2=-2, \ x_3=-4, \ x_4=-66

P(x)=x^4+73x^3+476x^2+932x+528

Therefore:

q=528

Regards.
Solution above is more structured
here is mine
if -a,-b,-c,-d are roots ( a, b, c,d all > 0) then expanding (x+a)(x+b)(x+c)(x+d) shen a+b + c + d = m
ab + bc + ac + ad + bd + cd = n
abc+ bcd+ acd + abd = p
abcd = q
now (1+a)(1+b)(1+c)(1+d) = 1 + ( a+b + c + d) + (ab + bc + ac + ad + bd + cd) + (abc+ bcd+ acd + abd) + abcd = 1+ m + n+ p + q = 2010 = 2 * 3 * 5 * 67
because of symetry considerions we can take a < b < c< d hence a = 1, b = 2, c= 4, d = 66
so q= abcd = 1 * 2 * 4 * 66 = 528
 
Last edited:
Well done to both of you and thanks for participating! :cool:

Do you guys have also some intriguing math problems that you could share with us here? Hehehe...(Wink)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K