Finding Restrictions for the Implicit Function Theorem

Click For Summary

Discussion Overview

The discussion revolves around the conditions under which the implicit function theorem can be applied to a system of two equations involving constants \(a\) and \(b\). Participants explore the requirements for solving for \(u\) and \(v\) as functions of \(x\) and \(y\) with continuous first-order partial derivatives in a specified region.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant suggests that for the implicit function theorem to apply, the determinant of a matrix derived from the equations must be non-zero, leading to the condition \(ab \neq 0\) and thus \(a^2 + b^2 \neq 0\).
  • Another participant questions whether setting \(u(x,y) = v(x,y) = a = 0\) would satisfy the conditions for the theorem.
  • A subsequent reply confirms the previous question and seeks further guidance on finding the necessary conditions.
  • Another participant proposes that partial derivatives must be computed for the equations, indicating that a series of equations should be derived to check the continuity and well-defined nature of the derivatives at the point \((1,0)\).
  • This participant also suggests substituting the point \((1,0)\) into the derived equations to find restrictions on \(a\) and \(b\).

Areas of Agreement / Disagreement

There is no clear consensus on the conditions required for the implicit function theorem to apply, as participants present differing views and approaches to the problem.

Contextual Notes

Participants express uncertainty regarding the completeness of their conditions and the implications of their proposed solutions, indicating that further exploration is needed to clarify the requirements.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Which relation do the constants $a,b$ have to satisfy so that the implicit function theorem implies that the system of two equations

$$axu^2v+byv^2=-a \ \ \ \ bxyu-auv^2=-a$$

can be solved as for u and v as functions $u=u(x,y)$ and $v=v(x,y)$ with continuous partial derivatives of first order in some region of $(1,0)$ and with u(1,0)=1, v(1,0)=-1.

I have thought the following:$$\Delta=\begin{pmatrix}
au^2v & bv^2\\
byu & -bxu
\end{pmatrix}=\begin{pmatrix}
-a & b\\
0 & -b
\end{pmatrix}$$It should hold that $det(\Delta)\neq0 \Rightarrow ab \neq 0$.

So the condition is $a^2+b^2 \neq 0$. Am I right?
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

Which relation do the constants $a,b$ have to satisfy so that the implicit function theorem implies that the system of two equations

$$axu^2v+byv^2=-a \ \ \ \ bxyu-auv^2=-a$$

can be solved as for u and v as functions $u=u(x,y)$ and $v=v(x,y)$ with continuous partial derivatives of first order in some region of $(1,0)$ and with u(1,0)=1, v(1,0)=-1.

I have thought the following:$$\Delta=\begin{pmatrix}
au^2v & bv^2\\
byu & -bxu
\end{pmatrix}=\begin{pmatrix}
-a & b\\
0 & -b
\end{pmatrix}$$It should hold that $det(\Delta)\neq0 \Rightarrow ab \neq 0$.

So the condition is $a^2+b^2 \neq 0$. Am I right?

Hey evinda! (Smile)

Suppose we pick $u(x,y)=v(x,y)=a=0$, wouldn't that satisfy all conditions? (Wondering)
 
I like Serena said:
Hey evinda! (Smile)

Suppose we pick $u(x,y)=v(x,y)=a=0$, wouldn't that satisfy all conditions? (Wondering)

Yes, that's right... Could you give me a hint how can we can find the desired condition? (Thinking)
 
evinda said:
Yes, that's right... Could you give me a hint how can we can find the desired condition? (Thinking)

Shouldn't we have partial derivative like:
$$
\pd{}x(axu^2v+byv^2)=au^2v + 2axuvu_x + axu^2v_x + 2buvv_x = 0
$$
and 3 more such equations?

We should be able to solve for $(u_x,u_y)$ and $(v_x,v_y)$, after which we need to check if each of them is a well defined , continuous vector function around $(x,y)=(1,0)$.
That means in particular that if we substitute $(x,y)=(1,0)$, $u(1,0)=1$, and $v(1,0)=-1$, that we should find that $(u_x,u_y)$ and $(v_x,v_y)$ are defined (not infinite).

We can probably make the substitution immediately, before solving for $(u_x,u_y)$ and $(v_x,v_y)$.
That should give us the required restrictions for a and b.
That is:
$$
\pd{}x(axu^2v+byv^2)\Big|_{(1,0)}=a\cdot -1 + 2a\cdot -1 \cdot u_x + av_x + 2b\cdot -1 \cdot v_x
= -a -2au_x+(a-2b)v_x = 0
$$
and the same for the other 3 equations.
Then solve for $(u_x,u_y)$ and $(v_x,v_y)$. (Thinking)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
674
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K