MHB Finding Shortest Path in G: Dijkstra's Algorithm

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Algorithm Path
AI Thread Summary
The discussion revolves around using Dijkstra's Algorithm to find the shortest path weights in a directed graph G with vertices {s, a, b, c, d} and specified edge weights. The user calculated the shortest path weights as d[s]=0, d[a]=5, d[b]=11, d[c]=9, and d[d]=3. Other participants confirmed the accuracy of these results, indicating agreement on the calculations. The focus remains on the application of Dijkstra's Algorithm for this specific graph scenario. The method and results were validated by the community.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Helloo!

I am asked to find the weights of the shortest path from s in a directed Graph G=(V,E), where V={s,a,b,c,d}, E={(s,a),(s,d),(a,b),(a,c),(a,d),(b,s),(b,c),(c,b),(d,a)} and their weights 5,3,6,4,1,3,7,2,2...
I used Dijkstra's Algorithm, and I found d=0,d[a]=5,d=11,d[c]=9,d[d]=3... Is this correct??
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Helloo!

I am asked to find the weights of the shortest path from s in a directed Graph G=(V,E), where V={s,a,b,c,d}, E={(s,a),(s,d),(a,b),(a,c),(a,d),(b,s),(b,c),(c,b),(d,a)} and their weights 5,3,6,4,1,3,7,2,2...
I used Dijkstra's Algorithm, and I found d=0,d[a]=5,d=11,d[c]=9,d[d]=3... Is this correct??


That's what I get as well.
 
Great...! :) Thank you!
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Back
Top