MHB Finding Solutions for $(1+sin^42\theta) = 17(1+sin2\theta)^4$ in $[0,2\pi ]$

  • Thread starter Thread starter DaalChawal
  • Start date Start date
Click For Summary
The equation $(1+\sin^4 2\theta) = 17(1+\sin 2\theta)^4$ is analyzed for solutions in the interval $[0, 2\pi]$. By substituting $\sin 2\theta$ with $x$, the problem is transformed into finding roots of the polynomial $(x + 2)(2x + 1)(4x^2 + 7x + 4) = 0$. A graphical approach indicates a solution exists for $x$ in the range $(-1, 0)$. Further investigation reveals multiple corresponding values of $\theta$ for this range. The discussion seeks confirmation on the correctness of the solution method and the number of solutions found.
DaalChawal
Messages
85
Reaction score
0
Number of solutions of $(1+sin^42\theta) = 17(1+sin2\theta)^4$ in $[0,2\pi ]$

I solved this by assuming $sin2\theta$ as $x$ and then I draw graph and found there was a solution for $x$ belonging to $(-1,0)$ then I drew graph of $sin2\theta$ and check for what values of $\theta$ it is lying in $(0,-1)$. But I got multiple values... Is this correct?? Help
 
Last edited:
Mathematics news on Phys.org
DaalChawal said:
Number of solutions of $(1+sin^42\theta) = 17(1+sin2\theta)^4$ in $[0,2\pi ]$

I solved this by assuming $sin2\theta$ as $x$ and then I draw graph and found there was a solution for $x$ belonging to $(-1,0)$ then I drew graph of $sin2\theta$ and check for what values of $\theta$ it is lying in $(0,-1)$. But I got multiple values... Is this correct?? Help
$sin2\theta=x$
$(x + 2) (2 x + 1) (4 x^2 + 7 x + 4) = 0$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
Replies
4
Views
9K