Finding Spin Expectation Values At Any Time t > 0

Click For Summary
SUMMARY

This discussion focuses on calculating the spin expectation values for a spin-1/2 particle in a magnetic field aligned with the z-direction. The initial spin state is represented as ##| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}##, with coefficients ##a_u=\frac{3}{5}## and ##a_d=\frac{4}{5}## for the z-basis states. The spinor at any time t is given by ##| A \rangle=\frac 1 5\begin{bmatrix}3 e^{-i\omega t/2}\\4 e^{+i\omega t/2}\end{bmatrix}##. The expectation value of ##S_x## is calculated as ##\langle S_x \rangle = \frac {12\hbar} {25} e^{i\omega t}##, although a mistake in the calculation was noted by participants in the discussion.

PREREQUISITES
  • Understanding of quantum mechanics, specifically spin-1/2 particles.
  • Familiarity with the mathematical representation of spinors and expectation values.
  • Knowledge of the z-basis representation of spin states.
  • Proficiency in complex numbers and exponential functions in quantum mechanics.
NEXT STEPS
  • Study the derivation of expectation values in quantum mechanics, focusing on spin operators.
  • Learn about the representation of spin states in different bases, such as the x and y bases.
  • Explore the implications of the gyromagnetic ratio on spin dynamics in magnetic fields.
  • Investigate the time evolution of quantum states using the Schrödinger equation.
USEFUL FOR

Students and researchers in quantum mechanics, particularly those focusing on spin systems, quantum state representation, and expectation value calculations in magnetic fields.

Leechie
Messages
19
Reaction score
2

Homework Statement


Write down a spinor that represents the spin state of the particle at any time t > 0. Use the expression to find the expectation values of ##S_x## and ##S_y##

Homework Equations


The particle is a spin-##\frac 1 2## particle, the gyromagnetic ratio is ##\gamma_s \lt 0##, and the magnetic field points in the ##z## direction.

The initial spin state is: ##| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}##

The Attempt at a Solution


This is where I've got so far:
$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=a_u|\uparrow_n \rangle+a_d|\downarrow_n \rangle$$
Finding ##|\uparrow_n \rangle## and ##|\downarrow_n \rangle## using ##|\uparrow_n \rangle=\begin{bmatrix}\cos(\theta / 2)\\e^{i\phi}\sin(\theta / 2)\end{bmatrix}## and ##|\downarrow_n \rangle=\begin{bmatrix}-e^{-i\phi}\sin(\theta / 2)\\\cos(\theta / 2)\end{bmatrix}##. The magnetic field points in the ##z## direction so ##\theta = 0## and ##\phi = 0##:
$$|\uparrow_z \rangle=\begin{bmatrix}\cos(0)\\e^0\sin(0)\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} \\ |\downarrow_z \rangle=\begin{bmatrix}-e^0\sin(0)\\\cos(0)\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix}$$
Finding the coeffecients ##a_u## and ##a_d##:
$$a_u=\langle \uparrow_z | A \rangle=\frac 1 5 \begin{bmatrix}1&0\end{bmatrix} \begin{bmatrix}3\\4\end{bmatrix}=\frac 3 5 \\ a_d=\langle \downarrow_z | A \rangle=\frac 1 5 \begin{bmatrix}0&1\end{bmatrix} \begin{bmatrix}3\\4\end{bmatrix}=\frac 4 5$$
So:
$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac 3 5 \begin{bmatrix}1\\0\end{bmatrix} + \frac 4 5 \begin{bmatrix}0\\1\end{bmatrix}$$
Using the the equation for spin at any time ##| A \rangle=a_u e^{-iE_ut/\hbar}|\uparrow_n\rangle + a_d e^{-iE_dt/\hbar}|\downarrow_n\rangle## and since ##\gamma_s \lt 0## the energy eigenvalues are ##E_u=+\frac {\hbar \omega} 2## and ##E_d=-\frac {\hbar \omega} 2## I get:
$$| A \rangle=\frac 3 5 e^{-i\omega t/2}\begin{bmatrix}1\\0\end{bmatrix} + \frac 4 5 e^{+i\omega t/2}\begin{bmatrix}0\\1\end{bmatrix}$$
And so the spinor I get to is:
$$| A \rangle=\frac 1 5\begin{bmatrix}3 e^{-i\omega t/2}\\4 e^{+i\omega t/2}\end{bmatrix}$$
For the expectation value of ##S_x## I get:
$$\begin{align} \langle S_x \rangle & =\langle A | \hat {\mathrm S}_x | A \rangle \nonumber \\ & =\frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar 2 \begin{bmatrix}0&1\\1&0\end{bmatrix} \frac 1 5 \begin{bmatrix}3 e^{-i\omega t/2} \\ 4 e^{+i\omega t/2}\end{bmatrix} \nonumber \\ & = \frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar {10} \begin{bmatrix}4 e^{+i\omega t/2} \\ 3 e^{-i\omega t/2} \end{bmatrix} \nonumber \\ & = \frac \hbar {50} \left( 12e^{i\omega t} + 12e^{i\omega t} \right) \nonumber \\ & = \frac {12\hbar} {25} e^{iwt} \nonumber \end{align}$$
Could someone tell me if I'm along the right lines with this. I've been working on this for so long now I'm starting to lose sight of how this should workout.
Thanks
 
Physics news on Phys.org
Leechie said:
$$\begin{align} \langle S_x \rangle & =\langle A | \hat {\mathrm S}_x | A \rangle \nonumber \\ & =\frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar 2 \begin{bmatrix}0&1\\1&0\end{bmatrix} \frac 1 5 \begin{bmatrix}3 e^{-i\omega t/2} \\ 4 e^{+i\omega t/2}\end{bmatrix} \nonumber \\ & = \frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar {10} \begin{bmatrix}4 e^{+i\omega t/2} \\ 3 e^{-i\omega t/2} \end{bmatrix} \nonumber \\ & = \frac \hbar {50} \left( 12e^{i\omega t} + 12e^{i\omega t} \right) \nonumber \\ & = \frac {12\hbar} {25} e^{iwt} \nonumber \end{align}$$
You made a mistake going from line 4 to line 5 line 3 to 4 in there, so the final result is not correct. Otherwise, it looks fine.
 
Last edited:
  • Like
Likes Leechie
Leechie said:
Finding ##|\uparrow_n \rangle## and ##|\downarrow_n \rangle## using ##|\uparrow_n \rangle=\begin{bmatrix}\cos(\theta / 2)\\e^{i\phi}\sin(\theta / 2)\end{bmatrix}## and ##|\downarrow_n \rangle=\begin{bmatrix}-e^{-i\phi}\sin(\theta / 2)\\\cos(\theta / 2)\end{bmatrix}##. The magnetic field points in the ##z## direction so ##\theta = 0## and ##\phi = 0##:
$$|\uparrow_z \rangle=\begin{bmatrix}\cos(0)\\e^0\sin(0)\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} \\ |\downarrow_z \rangle=\begin{bmatrix}-e^0\sin(0)\\\cos(0)\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix}$$

Just an observation. The formulas you are using are valid for the "z-basis" where ##\begin{bmatrix}1\\0\end{bmatrix}## is the z-spin-up and ##\begin{bmatrix}0\\1\end{bmatrix}## is the z-spin-down. So, ##a_u = \frac35## and ##a_d = \frac45## immediately.

In other words, by definition:$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac35 |\uparrow_z \rangle + \frac45 |\downarrow_z \rangle$$
 
  • Like
Likes Leechie
I had a feeling there was something wrong somewhere, I'll take another look. Thanks for your help.
 
PeroK said:
Just an observation. The formulas you are using are valid for the "z-basis" where ##\begin{bmatrix}1\\0\end{bmatrix}## is the z-spin-up and ##\begin{bmatrix}0\\1\end{bmatrix}## is the z-spin-down. So, ##a_u = \frac35## and ##a_d = \frac45## immediately.

In other words, by definition:$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac35 |\uparrow_z \rangle + \frac45 |\downarrow_z \rangle$$

Thanks PeroK. When I was working through that I realized it just led back to the initial spin state because of the z-basis. Is the method I used a general way of calculating a spinor in any direction ##n##?
 
Leechie said:
Thanks PeroK. When I was working through that I realized it just led back to the initial spin state because of the z-basis. Is the method I used a general way of calculating a spinor in any direction ##n##?

Yes, the formulas you used would give you (expressed in the z-basis) the eigenspinors in the direction ##n##.
 
  • Like
Likes Leechie
PeroK said:
Yes, the formulas you used would give you (expressed in the z-basis) the eigenspinors in the direction ##n##.

Thanks. I think I'm finally starting to get my head round this now.
 
  • Like
Likes PeroK

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K