Finding the domain of this function.

  • Context: MHB 
  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Domain Function
Click For Summary
SUMMARY

The domain of the function \( f(x) = \frac{1}{\sqrt{x^2 - 2x\cos(\theta) + 4}} \) for \( \theta \in [0, \pi] \) is determined by analyzing the expression under the square root. For \( \theta = \frac{\pi}{2} \), the domain is all real numbers. For \( \theta = 0 \), \( x \neq 2 \), and for \( \theta = \pi \), \( x \neq -2 \). For values of \( \theta \) between \( 0 \) and \( \pi \), the expression remains positive, confirming that the domain is \( \mathbb{R} \) for all \( \theta \) in the specified range.

PREREQUISITES
  • Understanding of quadratic functions and their properties
  • Knowledge of trigonometric identities and their applications
  • Familiarity with inequalities and their solutions
  • Basic calculus concepts related to functions and domains
NEXT STEPS
  • Study the properties of quadratic equations and their discriminants
  • Learn about the implications of trigonometric functions on algebraic expressions
  • Explore advanced topics in real analysis, focusing on function domains
  • Investigate the behavior of functions with square roots and their restrictions
USEFUL FOR

Mathematicians, students studying calculus or algebra, educators teaching function analysis, and anyone interested in understanding the implications of trigonometric functions on algebraic domains.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am having some trouble find the domain with this function: $f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ and $\theta\in[0,\pi]$.

My attempt:

I know that the denominator needs to be greater than 0. So $\sqrt{x^2-2x\cos(\theta)+2}>0$. I squared both side of the inequality. Then I use the quadratic formula in terms of x: $x>\frac{2\cos(\theta)\pm\sqrt{4(\cos(\theta)^2-4}}{2}$. With some simplification and using the trig. identities, I got $x> \cos(\theta)\pm \sin(\theta)$. But I do not know how to proceed from here. Thanks,
Cbarker1
 
Physics news on Phys.org
Cbarker1 said:
$f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ and $\theta\in[0,\pi]$.

the domain depends of the value of $\theta$ ...

$\theta = \dfrac{\pi}{2} \implies f(x) = \dfrac{1}{\sqrt{x^2+4}}$

... $x$ can be any real value

$\theta = 0 \implies f(x) = \dfrac{1}{\sqrt{(x-2)^2}} = \dfrac{1}{|x-2|}$

... $x \ne 2$

$\theta = \pi \implies f(x) = \dfrac{1}{\sqrt{(x+2)^2}} = \dfrac{1}{|x+2|}$

... $x \ne -2$

for $0 < \theta < \dfrac{\pi}{2}$

$0 < \cos{\theta} < 1 \implies 0 < 2x\cos{\theta} < 2x$ for $x > 0 \implies x^2-2x\cos{\theta}+4 > x^2 - 2x + 4 \ge 0$

$0 < \cos{\theta} < 1 \implies 2x < 2x\cos{\theta} < 0$ for $x < 0 \implies x^2-2x\cos{\theta}+4 > 0$

... $x$ can be any real value

for $\dfrac{\pi}{2}< \theta < \pi$

$-1 < \cos{\theta} < 0 \implies -2x < 2x\cos{\theta} < 0$ for $x > 0 \implies x^2-2x\cos{\theta}+4 > 0$

$-1 < \cos{\theta} < 0 \implies 0 < 2x\cos{\theta} < -2x$ for $x < 0 \implies x^2-2x\cos{\theta}+4 > x^2-2x+4 \ge 0$

... $x$ can be any real value
 
Cbarker1 said:
Dear Everyone,

I am having some trouble find the domain with this function: $f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ and $\theta\in[0,\pi]$.

My attempt:

I know that the denominator needs to be greater than 0. So $\sqrt{x^2-2x\cos(\theta)+2}>0$. I squared both side of the inequality. Then I use the quadratic formula in terms of x: $x>\frac{2\cos(\theta)\pm\sqrt{4(\cos(\theta)^2-4}}{2}$. With some simplification and using the trig. identities, I got $x> \cos(\theta)\pm \sin(\theta)$. But I do not know how to proceed from here.Thanks,
Cbarker1

$\displaystyle \begin{align*} x^2 - 2\cos{ \left( \theta \right) } \, x + 4 &> 0 \\ x^2 - 2\cos{ \left( \theta \right) }\, x + \left[ -\cos{ \left( \theta \right) } \right] ^2 - \left[ -\cos{ \left( \theta \right) } \right] ^2 + 4 &> 0 \\
\left[ x - \cos{ \left( \theta \right) } \right] ^2 - \cos^2{ \left( \theta \right) } + 4 &> 0 \end{align*}$

Note that $\displaystyle \left[ x - \cos{ \left( \theta \right) } \right] ^2 \geq 0 $ for all $x, \theta$ and also

$\displaystyle \begin{align*} 0 \leq \cos^2{ \left( \theta \right) } &\leq 1 \textrm{ for all } \theta, \textrm{ so } \\ -1 \leq -\cos^2{ \left( \theta \right) } &\leq 0 \\ 3 \leq -\cos^2{ \left( \theta \right) } + 4 &\leq 4 \end{align*} $

so that means $\displaystyle \left[ x - \cos{ \left( \theta \right) } \right] ^2 - \cos^2{ \left( \theta \right) } + 4 \geq 3 $ for all $x, \theta $.

Since the square root amount is never any less than 3, it's going to always be defined. The domain is $\mathbf{R}$.
 
Prove It said:
Since the square root amount is never any less than 3, it's going to always be defined. The domain is $\mathbf{R}$.

that is correct ... I was looking at $x^2 \pm 2x +4$ as if it were $x^2 \pm 4x +4$ when I factored.

mea culpa.
 
skeeter said:
that is correct ... I was looking at $x^2 \pm 2x +4$ as if it were $x^2 \pm 4x +4$ when I factored.

mea culpa.

Sorry Skeeter, didn't mean to upset you. I just liked my strategy so wanted to share it hahaha.
 
No upset ... it happens.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K