Finding the domain of this function.

  • Context: MHB 
  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Domain Function
Click For Summary

Discussion Overview

The discussion revolves around finding the domain of the function $f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ where $\theta$ is in the interval $[0,\pi]$. Participants explore various approaches to determine the conditions under which the function is defined, considering different values of $\theta$.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant expresses difficulty in finding the domain and begins by stating that the denominator must be greater than zero, leading to an inequality involving $x$ and $\theta$.
  • Another participant analyzes specific cases for $\theta$: for $\theta = \frac{\pi}{2}$, the function is defined for all real $x$; for $\theta = 0$, $x$ cannot equal 2; and for $\theta = \pi$, $x$ cannot equal -2.
  • For $0 < \theta < \frac{\pi}{2}$, it is suggested that $x$ can take any real value based on the behavior of the quadratic expression.
  • For $\frac{\pi}{2} < \theta < \pi$, similar reasoning is applied, concluding that $x$ can also be any real value.
  • A later post reiterates that the expression under the square root is always greater than or equal to 3, suggesting that the domain is all real numbers, $\mathbf{R}$.
  • Participants acknowledge a misunderstanding regarding the factoring of the quadratic expression, leading to a correction of earlier claims about the domain.

Areas of Agreement / Disagreement

There is no clear consensus on the domain of the function, as participants present differing views based on specific values of $\theta$ and their implications. Some argue that the domain is all real numbers, while others highlight exceptions based on particular cases of $\theta.

Contextual Notes

Participants note that the analysis of the quadratic expression depends on the value of $\theta$, and there are unresolved assumptions regarding the behavior of the function across its domain.

Who May Find This Useful

Readers interested in mathematical reasoning related to function domains, particularly in the context of trigonometric parameters, may find this discussion relevant.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am having some trouble find the domain with this function: $f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ and $\theta\in[0,\pi]$.

My attempt:

I know that the denominator needs to be greater than 0. So $\sqrt{x^2-2x\cos(\theta)+2}>0$. I squared both side of the inequality. Then I use the quadratic formula in terms of x: $x>\frac{2\cos(\theta)\pm\sqrt{4(\cos(\theta)^2-4}}{2}$. With some simplification and using the trig. identities, I got $x> \cos(\theta)\pm \sin(\theta)$. But I do not know how to proceed from here. Thanks,
Cbarker1
 
Physics news on Phys.org
Cbarker1 said:
$f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ and $\theta\in[0,\pi]$.

the domain depends of the value of $\theta$ ...

$\theta = \dfrac{\pi}{2} \implies f(x) = \dfrac{1}{\sqrt{x^2+4}}$

... $x$ can be any real value

$\theta = 0 \implies f(x) = \dfrac{1}{\sqrt{(x-2)^2}} = \dfrac{1}{|x-2|}$

... $x \ne 2$

$\theta = \pi \implies f(x) = \dfrac{1}{\sqrt{(x+2)^2}} = \dfrac{1}{|x+2|}$

... $x \ne -2$

for $0 < \theta < \dfrac{\pi}{2}$

$0 < \cos{\theta} < 1 \implies 0 < 2x\cos{\theta} < 2x$ for $x > 0 \implies x^2-2x\cos{\theta}+4 > x^2 - 2x + 4 \ge 0$

$0 < \cos{\theta} < 1 \implies 2x < 2x\cos{\theta} < 0$ for $x < 0 \implies x^2-2x\cos{\theta}+4 > 0$

... $x$ can be any real value

for $\dfrac{\pi}{2}< \theta < \pi$

$-1 < \cos{\theta} < 0 \implies -2x < 2x\cos{\theta} < 0$ for $x > 0 \implies x^2-2x\cos{\theta}+4 > 0$

$-1 < \cos{\theta} < 0 \implies 0 < 2x\cos{\theta} < -2x$ for $x < 0 \implies x^2-2x\cos{\theta}+4 > x^2-2x+4 \ge 0$

... $x$ can be any real value
 
Cbarker1 said:
Dear Everyone,

I am having some trouble find the domain with this function: $f(x)=\frac{1}{\sqrt{x^2-2x\cos(\theta)+4}}$ and $\theta\in[0,\pi]$.

My attempt:

I know that the denominator needs to be greater than 0. So $\sqrt{x^2-2x\cos(\theta)+2}>0$. I squared both side of the inequality. Then I use the quadratic formula in terms of x: $x>\frac{2\cos(\theta)\pm\sqrt{4(\cos(\theta)^2-4}}{2}$. With some simplification and using the trig. identities, I got $x> \cos(\theta)\pm \sin(\theta)$. But I do not know how to proceed from here.Thanks,
Cbarker1

$\displaystyle \begin{align*} x^2 - 2\cos{ \left( \theta \right) } \, x + 4 &> 0 \\ x^2 - 2\cos{ \left( \theta \right) }\, x + \left[ -\cos{ \left( \theta \right) } \right] ^2 - \left[ -\cos{ \left( \theta \right) } \right] ^2 + 4 &> 0 \\
\left[ x - \cos{ \left( \theta \right) } \right] ^2 - \cos^2{ \left( \theta \right) } + 4 &> 0 \end{align*}$

Note that $\displaystyle \left[ x - \cos{ \left( \theta \right) } \right] ^2 \geq 0 $ for all $x, \theta$ and also

$\displaystyle \begin{align*} 0 \leq \cos^2{ \left( \theta \right) } &\leq 1 \textrm{ for all } \theta, \textrm{ so } \\ -1 \leq -\cos^2{ \left( \theta \right) } &\leq 0 \\ 3 \leq -\cos^2{ \left( \theta \right) } + 4 &\leq 4 \end{align*} $

so that means $\displaystyle \left[ x - \cos{ \left( \theta \right) } \right] ^2 - \cos^2{ \left( \theta \right) } + 4 \geq 3 $ for all $x, \theta $.

Since the square root amount is never any less than 3, it's going to always be defined. The domain is $\mathbf{R}$.
 
Prove It said:
Since the square root amount is never any less than 3, it's going to always be defined. The domain is $\mathbf{R}$.

that is correct ... I was looking at $x^2 \pm 2x +4$ as if it were $x^2 \pm 4x +4$ when I factored.

mea culpa.
 
skeeter said:
that is correct ... I was looking at $x^2 \pm 2x +4$ as if it were $x^2 \pm 4x +4$ when I factored.

mea culpa.

Sorry Skeeter, didn't mean to upset you. I just liked my strategy so wanted to share it hahaha.
 
No upset ... it happens.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K