MHB Finding the explicit solution to the IVP

  • Thread starter Thread starter shamieh
  • Start date Start date
  • Tags Tags
    Explicit Ivp
shamieh
Messages
538
Reaction score
0
Find the explicit solution to the IVP.

$xdx + ye^{-x}dy=0$, $y(0) =1$
so I did some manipulation to get
$ye^{-x}dy= -xdx$ ==> $\frac{dy}{dx}=\frac{-x}{ye^{-x}}$

but now I'm confused on what to do. What I found above is the implicit solution right? So do I just need to get $y'$ on the left side by multiplying through with a $dx$ and then just plug a $0$ in for $x$ and a $1$ in for $y$ to get the explicit solution??
 
Physics news on Phys.org
An implicit solution to an ODE is a relationship derived from the ODE in which you cannot solve for either variable, whereas an explicit solution is one in which you can solve for one of the variables.

I think what I would do is separate the variables to obtain:

$$y\,dy=-xe^x\,dx$$

Now integrate both sides:

$$\int_1^y u\,du=\int_x^0 ve^v\,dv$$

What do you find?
 
Okay that's what I suspected. I got $c=1$ thus I got for my final explicit solution $y= \sqrt{2e^x-2xe^x-1}$
 
shamieh said:
Okay that's what I suspected. I got $c=1$ thus I got for my final explicit solution $y= \sqrt{2e^x-2xe^x-1}$

I get the same. (Yes)
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top