Finding the Length of a Dividing Line in a Trapezoid

Click For Summary

Discussion Overview

The discussion revolves around finding the length of a dividing line in a trapezoid that is parallel to the bases, given the lengths of the bases and the requirement that the line divides the trapezoid into two equal areas. The scope includes mathematical reasoning and exploration of geometric properties.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents the problem of finding the length of a line that divides a trapezoid with bases of 100m and 160m into two equal areas.
  • Another participant questions the clarity of the problem statement and seeks confirmation on how to begin solving it.
  • A participant proposes a mathematical model to express the length of the dividing line as a function of height, indicating that the length decreases linearly from the larger base to the smaller base.
  • Further mathematical manipulation leads to a quadratic equation in terms of height, which is derived from the area condition for the trapezoid.
  • Another participant continues from the quadratic equation, applying the quadratic formula to find the height at which the dividing line occurs, leading to an expression for the length of the dividing line.
  • A graph is provided to illustrate the relationship between the variables involved in the problem, including the effect of changing parameters on the length of the dividing line.

Areas of Agreement / Disagreement

The discussion does not reach a consensus on the final answer, as participants are engaged in exploring the mathematical derivation and implications of their findings without confirming a definitive solution.

Contextual Notes

The discussion includes unresolved assumptions regarding the height of the trapezoid and the specific conditions under which the area is considered equal. The mathematical steps involve several transformations that depend on the definitions of the trapezoid's dimensions.

Joe_1234
Messages
24
Reaction score
0
A trapezoid with a base of 100m and 160m is divided into 2 equal parts by a line parallel to the base. Find the length of dividing line.
 
Last edited by a moderator:
Mathematics news on Phys.org
Hi Joe_1234, can you check and confirm if the question is correctly typed?

Do you have any idea of how to begin tackling the problem?
 
Let's let the larger base be \(B\), the smaller base be \(b\) and the height be \(h\).

I would consider how long a line will be that cuts the trapezoid parallel to the bases. We know this length \(L\) will decrease linearly as we move from \(0\) to \(h\), and in fact, the line will contain the points:

$$L(0)=B$$

$$L(h)=b$$

And so:

$$L(y)=\frac{b-B}{h}y+B$$

Now, we require:

$$\frac{y}{2}(B+L(y))=\frac{h}{4}(B+b)$$

$$\frac{y}{2}\left(B+\frac{b-B}{h}y+B\right)=\frac{h}{4}(B+b)$$

$$2y\left(B+\frac{b-B}{h}y+B\right)=h(B+b)$$

$$2y(2Bh+(b-B)y)=h^2(B+b)$$

Arrange as quadratic in \(y\) in standard form:

$$2(B-b)y^2-4Bhy+h^2(B+b)=0$$

Can you proceed?
 
MarkFL said:
Let's let the larger base be \(B\), the smaller base be \(b\) and the height be \(h\).

I would consider how long a line will be that cuts the trapezoid parallel to the bases. We know this length \(L\) will decrease linearly as we move from \(0\) to \(h\), and in fact, the line will contain the points:

$$L(0)=B$$

$$L(h)=b$$

And so:

$$L(y)=\frac{b-B}{h}y+B$$

Now, we require:

$$\frac{y}{2}(B+L(y))=\frac{h}{4}(B+b)$$

$$\frac{y}{2}\left(B+\frac{b-B}{h}y+B\right)=\frac{h}{4}(B+b)$$

$$2y\left(B+\frac{b-B}{h}y+B\right)=h(B+b)$$

$$2y(2Bh+(b-B)y)=h^2(B+b)$$

Arrange as quadratic in \(y\) in standard form:

$$2(B-b)y^2-4Bhy+h^2(B+b)=0$$

Can you proceed?
Yes. Tnx
 
Let's follow up...we left off with the quadratic:

$$2(B-b)y^2-4Bhy+h^2(B+b)=0$$

Applying the quadratic formula, we find:

$$y=\frac{4Bh\pm\sqrt{(4Bh)^2-4(2(B-b))(h^2(B+b))}}{2(2(B-b))}=\frac{h(2B\pm\sqrt{2(B^2+b^2)})}{2(B-b)}$$

And so:

$$L\left(\frac{h(2B\pm\sqrt{2(B^2+b^2)})}{2(B-b)}\right)=\frac{b-B}{h}\left(\frac{h(2B\pm\sqrt{2(B^2+b^2)})}{2(B-b)}\right)+B=\pm\frac{\sqrt{2(B^2+b^2)}}{2}$$

Discarding the negative root, we obtain:

$$L(y)=\frac{\sqrt{2(B^2+b^2)}}{2}$$

As we should have expected, the result is independent of \(h\). Plugging in the given data, we find:

$$L=\frac{\sqrt{2(160^2+100^2)}}{2}\text{ m}=10\sqrt{178}\text{ m}\approx133.4\text{ m}$$
 
Here is a graph:

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-1,"ymin":0,"xmax":2,"ymax":1}},"randomSeed":"5f9c3ecd2c6f0225a19d7209849e7bf6","expressions":{"list":[{"type":"expression","id":"1","color":"#388c46","latex":"y=0\\left\\{0\\le x\\le1\\right\\}"},{"type":"expression","id":"2","color":"#388c46","latex":"y=h\\left\\{\\frac{1-b}{2}\\le x\\le\\frac{1+b}{2}\\right\\}"},{"type":"expression","id":"5","color":"#388c46","latex":"y=\\frac{2h}{1-b}x\\left\\{0\\le y\\le h\\right\\}"},{"type":"expression","id":"6","color":"#388c46","latex":"y=\\frac{2h}{b-1}\\left(x-1\\right)\\left\\{0\\le y\\le h\\right\\}"},{"type":"expression","id":"7","color":"#2d70b3","latex":"L=\\frac{\\sqrt{2(1+b^{2})}}{2}"},{"type":"expression","id":"8","color":"#c74440","latex":"y=\\frac{h(2-\\sqrt{2(1+b^{2})})}{2(1-b)}\\left\\{\\frac{1-L}{2}\\le x\\le\\frac{1+L}{2}\\right\\}","lineStyle":"DASHED"},{"type":"expression","id":"3","color":"#388c46","latex":"h=1","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":"0","max":"1"}},{"type":"expression","id":"4","color":"#6042a6","latex":"b=0.37","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":"0","max":".999"}},{"type":"expression","id":"9","color":"#6042a6"}]}}[/DESMOS]

Scroll down to the bottom of the expressions on the left and move the sliders. The red dashed line divides the trapezoid into two equal areas. :)
 

Similar threads

Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K