MHB Finding the Length of a Dividing Line in a Trapezoid

Click For Summary
The discussion focuses on calculating the length of a dividing line in a trapezoid with bases of 100m and 160m, which is parallel to the bases and divides the trapezoid into two equal areas. The participants derive a quadratic equation to express the relationship between the height and the lengths of the bases. By applying the quadratic formula, they find that the length of the dividing line, \(L\), is independent of height and is calculated as \(L = \frac{\sqrt{2(160^2 + 100^2)}}{2}\), approximating to 133.4m. A graph is provided to illustrate the division of the trapezoid into equal areas. The final result emphasizes the geometric properties of trapezoids in relation to area division.
Joe_1234
Messages
24
Reaction score
0
A trapezoid with a base of 100m and 160m is divided into 2 equal parts by a line parallel to the base. Find the length of dividing line.
 
Last edited by a moderator:
Mathematics news on Phys.org
Hi Joe_1234, can you check and confirm if the question is correctly typed?

Do you have any idea of how to begin tackling the problem?
 
Let's let the larger base be \(B\), the smaller base be \(b\) and the height be \(h\).

I would consider how long a line will be that cuts the trapezoid parallel to the bases. We know this length \(L\) will decrease linearly as we move from \(0\) to \(h\), and in fact, the line will contain the points:

$$L(0)=B$$

$$L(h)=b$$

And so:

$$L(y)=\frac{b-B}{h}y+B$$

Now, we require:

$$\frac{y}{2}(B+L(y))=\frac{h}{4}(B+b)$$

$$\frac{y}{2}\left(B+\frac{b-B}{h}y+B\right)=\frac{h}{4}(B+b)$$

$$2y\left(B+\frac{b-B}{h}y+B\right)=h(B+b)$$

$$2y(2Bh+(b-B)y)=h^2(B+b)$$

Arrange as quadratic in \(y\) in standard form:

$$2(B-b)y^2-4Bhy+h^2(B+b)=0$$

Can you proceed?
 
MarkFL said:
Let's let the larger base be \(B\), the smaller base be \(b\) and the height be \(h\).

I would consider how long a line will be that cuts the trapezoid parallel to the bases. We know this length \(L\) will decrease linearly as we move from \(0\) to \(h\), and in fact, the line will contain the points:

$$L(0)=B$$

$$L(h)=b$$

And so:

$$L(y)=\frac{b-B}{h}y+B$$

Now, we require:

$$\frac{y}{2}(B+L(y))=\frac{h}{4}(B+b)$$

$$\frac{y}{2}\left(B+\frac{b-B}{h}y+B\right)=\frac{h}{4}(B+b)$$

$$2y\left(B+\frac{b-B}{h}y+B\right)=h(B+b)$$

$$2y(2Bh+(b-B)y)=h^2(B+b)$$

Arrange as quadratic in \(y\) in standard form:

$$2(B-b)y^2-4Bhy+h^2(B+b)=0$$

Can you proceed?
Yes. Tnx
 
Let's follow up...we left off with the quadratic:

$$2(B-b)y^2-4Bhy+h^2(B+b)=0$$

Applying the quadratic formula, we find:

$$y=\frac{4Bh\pm\sqrt{(4Bh)^2-4(2(B-b))(h^2(B+b))}}{2(2(B-b))}=\frac{h(2B\pm\sqrt{2(B^2+b^2)})}{2(B-b)}$$

And so:

$$L\left(\frac{h(2B\pm\sqrt{2(B^2+b^2)})}{2(B-b)}\right)=\frac{b-B}{h}\left(\frac{h(2B\pm\sqrt{2(B^2+b^2)})}{2(B-b)}\right)+B=\pm\frac{\sqrt{2(B^2+b^2)}}{2}$$

Discarding the negative root, we obtain:

$$L(y)=\frac{\sqrt{2(B^2+b^2)}}{2}$$

As we should have expected, the result is independent of \(h\). Plugging in the given data, we find:

$$L=\frac{\sqrt{2(160^2+100^2)}}{2}\text{ m}=10\sqrt{178}\text{ m}\approx133.4\text{ m}$$
 
Here is a graph:

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-1,"ymin":0,"xmax":2,"ymax":1}},"randomSeed":"5f9c3ecd2c6f0225a19d7209849e7bf6","expressions":{"list":[{"type":"expression","id":"1","color":"#388c46","latex":"y=0\\left\\{0\\le x\\le1\\right\\}"},{"type":"expression","id":"2","color":"#388c46","latex":"y=h\\left\\{\\frac{1-b}{2}\\le x\\le\\frac{1+b}{2}\\right\\}"},{"type":"expression","id":"5","color":"#388c46","latex":"y=\\frac{2h}{1-b}x\\left\\{0\\le y\\le h\\right\\}"},{"type":"expression","id":"6","color":"#388c46","latex":"y=\\frac{2h}{b-1}\\left(x-1\\right)\\left\\{0\\le y\\le h\\right\\}"},{"type":"expression","id":"7","color":"#2d70b3","latex":"L=\\frac{\\sqrt{2(1+b^{2})}}{2}"},{"type":"expression","id":"8","color":"#c74440","latex":"y=\\frac{h(2-\\sqrt{2(1+b^{2})})}{2(1-b)}\\left\\{\\frac{1-L}{2}\\le x\\le\\frac{1+L}{2}\\right\\}","lineStyle":"DASHED"},{"type":"expression","id":"3","color":"#388c46","latex":"h=1","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":"0","max":"1"}},{"type":"expression","id":"4","color":"#6042a6","latex":"b=0.37","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":"0","max":".999"}},{"type":"expression","id":"9","color":"#6042a6"}]}}[/DESMOS]

Scroll down to the bottom of the expressions on the left and move the sliders. The red dashed line divides the trapezoid into two equal areas. :)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
5
Views
2K
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
6K