MHB Finding the Period of a Function

  • Thread starter Thread starter shen07
  • Start date Start date
  • Tags Tags
    Function Period
AI Thread Summary
The discussion revolves around finding the period of the function $\phi(x)$ given the equation $\phi(2x+3) + \phi(2x+7) = 10$. It is established that $\phi(\xi) = \phi(\xi + 8)$ indicates a period of 8. However, the conversation clarifies that the principal period, defined as the least positive value for which $\phi(x + p) = \phi(x)$, can be arbitrarily small for non-constant continuous functions. An example provided illustrates that by adjusting parameters, the period can be minimized significantly. Ultimately, while the function shows a period of 8, the principal period can be made very small depending on the function's form.
shen07
Messages
54
Reaction score
0
Hi guys,

I know that this question may be silly but could you please tell me how do i go about.

if $$\phi(2x+3)+\phi(2x+7)=10,\\\\\\\forall x\in\Re$$,find the period of $\phi(x)$.
 
Mathematics news on Phys.org
shen07 said:
Hi guys,

I know that this question may be silly but could you please tell me how do i go about.

if $$\phi(2x+3)+\phi(2x+7)=10,\\\\\\\forall x\in\Re$$,find the period of $\phi(x)$.

Setting $\displaystyle 2\ x + 3 = \xi$ You have that...

$\displaystyle \phi(\xi) = 10 - \phi (\xi + 4)\ (1)$

... but is also...

$\displaystyle \phi(\xi + 4) = 10 - \phi(\xi + 8)\ (2)$

Comparing (1) and (2) You arrive to write...

$\displaystyle \phi(\xi) = \phi(\xi + 8)\ (3)$

... so that the period of $\phi(*)$ is 8...

Kind regards

$\chi$ $\sigma$
 
Hi,
Certainly the previous response, $$\phi(x+8)=\phi(x)$$ for all x, is true. However, you asked for the period of the function. Usually when we talk of the period of a function f, we mean the least positive p with f(x + p) = f(x) for all x (sometimes this is called the principal period). For example, the period of sin(x) is $$2\pi$$. Aside: if f is a non-constant continuous function and there is a positive p with f(x + p) = f(x) for all x, then there is a smallest such p; i.e. the period of f exists.

For your specific question, if $$\phi$$ is a non-constant continuous function, the period can be an arbitrarily small positive value!
Example:
Let n be a positive integer, $$a={(2n+1)\pi\over4}$$ and $$\phi(x)=\text{sin}(ax)+5$$. Easily then $$\phi(x)+\phi(x+4)=10$$ for all x, and so this function satisfies your equation. The period of this function is $${2\over 2n+1}$$, which can be made as small as desired by taking n sufficiently large.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top