MHB Finding the Period of a Function

  • Thread starter Thread starter shen07
  • Start date Start date
  • Tags Tags
    Function Period
shen07
Messages
54
Reaction score
0
Hi guys,

I know that this question may be silly but could you please tell me how do i go about.

if $$\phi(2x+3)+\phi(2x+7)=10,\\\\\\\forall x\in\Re$$,find the period of $\phi(x)$.
 
Mathematics news on Phys.org
shen07 said:
Hi guys,

I know that this question may be silly but could you please tell me how do i go about.

if $$\phi(2x+3)+\phi(2x+7)=10,\\\\\\\forall x\in\Re$$,find the period of $\phi(x)$.

Setting $\displaystyle 2\ x + 3 = \xi$ You have that...

$\displaystyle \phi(\xi) = 10 - \phi (\xi + 4)\ (1)$

... but is also...

$\displaystyle \phi(\xi + 4) = 10 - \phi(\xi + 8)\ (2)$

Comparing (1) and (2) You arrive to write...

$\displaystyle \phi(\xi) = \phi(\xi + 8)\ (3)$

... so that the period of $\phi(*)$ is 8...

Kind regards

$\chi$ $\sigma$
 
Hi,
Certainly the previous response, $$\phi(x+8)=\phi(x)$$ for all x, is true. However, you asked for the period of the function. Usually when we talk of the period of a function f, we mean the least positive p with f(x + p) = f(x) for all x (sometimes this is called the principal period). For example, the period of sin(x) is $$2\pi$$. Aside: if f is a non-constant continuous function and there is a positive p with f(x + p) = f(x) for all x, then there is a smallest such p; i.e. the period of f exists.

For your specific question, if $$\phi$$ is a non-constant continuous function, the period can be an arbitrarily small positive value!
Example:
Let n be a positive integer, $$a={(2n+1)\pi\over4}$$ and $$\phi(x)=\text{sin}(ax)+5$$. Easily then $$\phi(x)+\phi(x+4)=10$$ for all x, and so this function satisfies your equation. The period of this function is $${2\over 2n+1}$$, which can be made as small as desired by taking n sufficiently large.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top