Finding the position where the electric field is zero

  • Thread starter Thread starter JohnnyLaws
  • Start date Start date
  • Tags Tags
    Eletric field
AI Thread Summary
The discussion focuses on finding the position where the electric field is zero between two positively charged particles. The initial attempt involved setting up the equations based on a chosen reference frame, leading to an unexpected result. By adjusting the sign in the equation for the electric field produced by the first charge, the correct position was determined to be 'x = d/2.' The confusion arises from the expectation that the electric field should always be positive for like charges, but it is clarified that the electric field is a vector with both magnitude and direction. At the midpoint, the electric fields from both charges are equal in magnitude but opposite in direction, resulting in cancellation.
JohnnyLaws
Messages
10
Reaction score
0
Homework Statement
Basically, we have two stationary charged particles. The distance between them is 'd.' We know that they have the same charge of 2*10^-6. The objective is to calculate the distance at which the electric field is zero.
Relevant Equations
I think the equation we need is the electric field equation: E = k*q/(r^2), where k = 8.988 x 10^9 Nm^2/C^2, and 'r' is the distance between a point and the charge that is producing the field
This is the outline of the exercise I did on paper.

exercise2.JPG

So basically, my attempt to solve this involved writing the equations according to the reference frame I chose. The origin is the first charge.

I began by putting the equations on paper:
E = 0=> k*q*1/(x^2)+k*q*1/((x+d))^2 = 0, Note that 'x + d' represents the distance between a point and the second charge.
After solving for 'x,' I obtained a strange result. Following that, I began to manipulate the initial condition, and instead of writing the electric field produced by the first charge with a positive sign, I used a minus sign, and I obtained the correct answer: 'x = d/2'

What I don't understand is why this is working, considering that all particles are positively charged. Shouldn't the electric field always be positive when charges have the same sign?
 
Physics news on Phys.org
JohnnyLaws said:
What I don't understand is why this is working, considering that all particles are positively charged. Shouldn't the electric field always be positive when charges have the same sign?
The electric fields due to the two charges are equal and opposite at the midpoint between them. The fields cancel out at that point.
 
  • Like
Likes MatinSAR and JohnnyLaws
JohnnyLaws said:
Shouldn't the electric field always be positive when charges have the same sign?
Remember that the electric field is a vector. It has magnitude and direction. The magnitude is what is always positive. What is always true about positive charges is the electric field due to them points away from the charges which could be in the positive x-direction or the negative x-direction as you show in your drawing.
 
  • Like
Likes MatinSAR and JohnnyLaws
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top