MHB Finding Units in $\mathbb{Z}[i]$: Is There More Than $1, -1, i$, and $-i$?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Units
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
Let $d \in \mathbb{Z}$ and the set $\mathbb{Z}[\sqrt{d}]=\{ a+b \sqrt{d},a,b \in \mathbb{Z}\}$.
I have to find all the units of the ring $\mathbb{Z}=\{ a+bi , a,b \in \mathbb{Z}\}$
I thought that these: $1,-1,i,-i$ are units of this ring..But are there also others?I think not..Am I right? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! :)
Let $d \in \mathbb{Z}$ and the set $\mathbb{Z}[\sqrt{d}]=\{ a+b \sqrt{d},a,b \in \mathbb{Z}\}$.
I have to find all the units of the ring $\mathbb{Z}=\{ a+bi , a,b \in \mathbb{Z}\}$
I thought that these: $1,-1,i,-i$ are units of this ring..But are there also others?I think not..Am I right? (Thinking)


Hi!

Which one is it? Is it $\mathbb{Z}[\sqrt{d}]$? Or is it $\mathbb{Z}$??
smileyvault-cute-big-smiley-animated-079.gif
 
I like Serena said:
Hi!

Which one is it? Is it $\mathbb{Z}[\sqrt{d}]$? Or is it $\mathbb{Z}$??
smileyvault-cute-big-smiley-animated-079.gif


It is $\mathbb{Z}[\sqrt{d}]$ with $d=i^2$.. :rolleyes:
 
evinda said:
It is $\mathbb{Z}[\sqrt{d}]$ with $d=i^2$.. :rolleyes:

Heh.

The only units in $\mathbb{Z}$ are indeed $\pm 1, \pm i$.

To verify, consider the Gaussian integer norm given by $N(a+bi)=a^2+b^2$.
When two numbers are multiplied, their norms are multiplied as well.
Since no non-zero number has a norm of less than 1, all units have to have norm 1.
 
The key to understanding WHY this works is:

Theorem: the norm $N$ on $\Bbb Z$ is multiplicative:

$N(uv) = N(u)N(v)$, for $u,v \in \Bbb Z$.

Proof: Let $u = a+bi,v = c+di,\ a,b,c,d \in \Bbb Z$.

Then $N(uv) = N((a+bi)(c+di)) = N(ac - bd + (ad + bc)i)$

$= (ac - bd)^2 + (ad + bc)^2$

$= a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2$

$= a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2$

$= (a^2 + b^2)c^2 + (a^2 + b^2)d^2$

$= (a^2 + b^2)(c^2 + d^2) = N(a+bi)N(c+di) = N(u)N(v)$. QED.

Therefore, if $u$ is a unit in $\Bbb Z$, we have some $v \in \Bbb Z$ with $uv = 1$.

So $N(u)N(v) = N(uv) = N(1) = 1^2 + 0^2 = 1$.

Now, $N(u),N(v)$ are INTEGERS, so $N(u)$ is a unit in $\Bbb Z$. Moreover, since $N(u)$ is always non-negative, it follows that:

$N(u) = 1$

From this, we obtain, if $u = a+bi$, that:

$a^2 + b^2 = 1$

This means that $|a|,|b| \leq 1$. Possible solutions are then...?
 
I like Serena said:
Heh.

The only units in $\mathbb{Z}$ are indeed $\pm 1, \pm i$.

To verify, consider the Gaussian integer norm given by $N(a+bi)=a^2+b^2$.
When two numbers are multiplied, their norms are multiplied as well.
Since no non-zero number has a norm of less than 1, all units have to have norm 1.


Deveno said:
The key to understanding WHY this works is:

Theorem: the norm $N$ on $\Bbb Z$ is multiplicative:

$N(uv) = N(u)N(v)$, for $u,v \in \Bbb Z$.

Proof: Let $u = a+bi,v = c+di,\ a,b,c,d \in \Bbb Z$.

Then $N(uv) = N((a+bi)(c+di)) = N(ac - bd + (ad + bc)i)$

$= (ac - bd)^2 + (ad + bc)^2$

$= a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2$

$= a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2$

$= (a^2 + b^2)c^2 + (a^2 + b^2)d^2$

$= (a^2 + b^2)(c^2 + d^2) = N(a+bi)N(c+di) = N(u)N(v)$. QED.

Therefore, if $u$ is a unit in $\Bbb Z$, we have some $v \in \Bbb Z$ with $uv = 1$.

So $N(u)N(v) = N(uv) = N(1) = 1^2 + 0^2 = 1$.

Now, $N(u),N(v)$ are INTEGERS, so $N(u)$ is a unit in $\Bbb Z$. Moreover, since $N(u)$ is always non-negative, it follows that:

$N(u) = 1$

From this, we obtain, if $u = a+bi$, that:

$a^2 + b^2 = 1$

This means that $|a|,|b| \leq 1$. Possible solutions are then...?


I understand..Thank you both very much! (Nod)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top