MHB Finding Units in $\mathbb{Z}[i]$: Is There More Than $1, -1, i$, and $-i$?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Units
Click For Summary
SUMMARY

The only units in the ring $\mathbb{Z}[i]$ are $\pm 1$ and $\pm i$. This conclusion is derived from the Gaussian integer norm, defined as $N(a+bi) = a^2 + b^2$, which is multiplicative. For any unit $u$ in $\mathbb{Z}[i]$, the norm must equal 1, leading to the equation $a^2 + b^2 = 1$. The only integer solutions to this equation are the aforementioned units.

PREREQUISITES
  • Understanding of Gaussian integers
  • Knowledge of the concept of norms in algebraic structures
  • Familiarity with multiplicative properties of norms
  • Basic algebra involving complex numbers
NEXT STEPS
  • Study the properties of Gaussian integers in more depth
  • Explore the concept of units in other rings, such as $\mathbb{Z}[\sqrt{d}]$
  • Learn about the application of norms in algebraic number theory
  • Investigate the structure of other algebraic integers and their units
USEFUL FOR

Mathematicians, students of algebra, and anyone interested in number theory, particularly those studying the properties of rings and units in algebraic structures.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
Let $d \in \mathbb{Z}$ and the set $\mathbb{Z}[\sqrt{d}]=\{ a+b \sqrt{d},a,b \in \mathbb{Z}\}$.
I have to find all the units of the ring $\mathbb{Z}=\{ a+bi , a,b \in \mathbb{Z}\}$
I thought that these: $1,-1,i,-i$ are units of this ring..But are there also others?I think not..Am I right? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! :)
Let $d \in \mathbb{Z}$ and the set $\mathbb{Z}[\sqrt{d}]=\{ a+b \sqrt{d},a,b \in \mathbb{Z}\}$.
I have to find all the units of the ring $\mathbb{Z}=\{ a+bi , a,b \in \mathbb{Z}\}$
I thought that these: $1,-1,i,-i$ are units of this ring..But are there also others?I think not..Am I right? (Thinking)


Hi!

Which one is it? Is it $\mathbb{Z}[\sqrt{d}]$? Or is it $\mathbb{Z}$??
smileyvault-cute-big-smiley-animated-079.gif
 
I like Serena said:
Hi!

Which one is it? Is it $\mathbb{Z}[\sqrt{d}]$? Or is it $\mathbb{Z}$??
smileyvault-cute-big-smiley-animated-079.gif


It is $\mathbb{Z}[\sqrt{d}]$ with $d=i^2$.. :rolleyes:
 
evinda said:
It is $\mathbb{Z}[\sqrt{d}]$ with $d=i^2$.. :rolleyes:

Heh.

The only units in $\mathbb{Z}$ are indeed $\pm 1, \pm i$.

To verify, consider the Gaussian integer norm given by $N(a+bi)=a^2+b^2$.
When two numbers are multiplied, their norms are multiplied as well.
Since no non-zero number has a norm of less than 1, all units have to have norm 1.
 
The key to understanding WHY this works is:

Theorem: the norm $N$ on $\Bbb Z$ is multiplicative:

$N(uv) = N(u)N(v)$, for $u,v \in \Bbb Z$.

Proof: Let $u = a+bi,v = c+di,\ a,b,c,d \in \Bbb Z$.

Then $N(uv) = N((a+bi)(c+di)) = N(ac - bd + (ad + bc)i)$

$= (ac - bd)^2 + (ad + bc)^2$

$= a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2$

$= a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2$

$= (a^2 + b^2)c^2 + (a^2 + b^2)d^2$

$= (a^2 + b^2)(c^2 + d^2) = N(a+bi)N(c+di) = N(u)N(v)$. QED.

Therefore, if $u$ is a unit in $\Bbb Z$, we have some $v \in \Bbb Z$ with $uv = 1$.

So $N(u)N(v) = N(uv) = N(1) = 1^2 + 0^2 = 1$.

Now, $N(u),N(v)$ are INTEGERS, so $N(u)$ is a unit in $\Bbb Z$. Moreover, since $N(u)$ is always non-negative, it follows that:

$N(u) = 1$

From this, we obtain, if $u = a+bi$, that:

$a^2 + b^2 = 1$

This means that $|a|,|b| \leq 1$. Possible solutions are then...?
 
I like Serena said:
Heh.

The only units in $\mathbb{Z}$ are indeed $\pm 1, \pm i$.

To verify, consider the Gaussian integer norm given by $N(a+bi)=a^2+b^2$.
When two numbers are multiplied, their norms are multiplied as well.
Since no non-zero number has a norm of less than 1, all units have to have norm 1.


Deveno said:
The key to understanding WHY this works is:

Theorem: the norm $N$ on $\Bbb Z$ is multiplicative:

$N(uv) = N(u)N(v)$, for $u,v \in \Bbb Z$.

Proof: Let $u = a+bi,v = c+di,\ a,b,c,d \in \Bbb Z$.

Then $N(uv) = N((a+bi)(c+di)) = N(ac - bd + (ad + bc)i)$

$= (ac - bd)^2 + (ad + bc)^2$

$= a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2$

$= a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2$

$= (a^2 + b^2)c^2 + (a^2 + b^2)d^2$

$= (a^2 + b^2)(c^2 + d^2) = N(a+bi)N(c+di) = N(u)N(v)$. QED.

Therefore, if $u$ is a unit in $\Bbb Z$, we have some $v \in \Bbb Z$ with $uv = 1$.

So $N(u)N(v) = N(uv) = N(1) = 1^2 + 0^2 = 1$.

Now, $N(u),N(v)$ are INTEGERS, so $N(u)$ is a unit in $\Bbb Z$. Moreover, since $N(u)$ is always non-negative, it follows that:

$N(u) = 1$

From this, we obtain, if $u = a+bi$, that:

$a^2 + b^2 = 1$

This means that $|a|,|b| \leq 1$. Possible solutions are then...?


I understand..Thank you both very much! (Nod)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
899
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
971
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K