I Finding vertex of a 3D Triangle on a Plane

Anand Sivaram
Messages
90
Reaction score
43
TL;DR Summary
3D Triangle third vertex on a Plane
I came across the following problem and wondering how to solve it.

There is a plane n1x + n2y + n3z + n4 = 0 where n1, n2, n3, n4 are known. The triangle is in this plane.
We already know the two vertices P1(x1, y1, z1), P2(x2, y2, z2) of the triangle.
Now we have to find the third vertex P(x, y, z) of the triangle on the plane
such that P1-P distance is L1 and P2-P distance is L2 and are known.

I tried to find the solution in a number of places and came across the following one, but I was wondering whether we could get a unique solution based on that. Because this solutions reaches the long equation and the plane equation already, that means two equations and three unknowns.
https://math.stackexchange.com/ques...le-with-known-plane-two-points-and-lengths-of

Is it possible to get a unique or two point solution for P? Any help would be really appreciated.
 
Mathematics news on Phys.org
I think the answer is there are two solutions as you surmised from a simple geometric argument using a compass and straightedge on a piece of paper. With the paper acting as the plane, draw a line segment on the paper as one edge of the triangle.

Drawing arcs centered on the endpoints of the line segment with the lengths L1 and L2. You will find two points, both solutions to your problem.
 
  • Like
Likes Anand Sivaram
Anand Sivaram said:
Is it possible to get a unique or two point solution for P?
Not a unique solution.
jedishrfu said:
Drawing arcs centered on the endpoints of the line segment with the lengths L1 and L2. You will find two points, both solutions to your problem.
Right, and the two solutions for P are symmetric across the line segment ##P_1P_2##.
 
  • Like
Likes Anand Sivaram and jedishrfu
There should be three equations for P. P is on the plane and the two distance equations.
 
  • Like
Likes Anand Sivaram and jedishrfu
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top