How can I use determinants to find energy levels in a finite square potential?

Click For Summary
To find energy levels in a finite square potential well using determinants, boundary conditions lead to a system of equations that must be solved for unknown coefficients. The determinant of this system is calculated, and when it equals zero, it indicates the existence of nontrivial solutions, which correspond to the energy levels. The determinant can be treated as a function of energy (E), and plotting it helps identify zero crossings that reveal eigenvalues. The imaginary component of the determinant may be relevant for understanding the behavior of solutions. Once the energy states are determined, numerical methods can be employed to solve for the unknown coefficients.
pepsicola
Messages
2
Reaction score
0
Hi, I am in the process of learning QM.
I am looking at this problem regarding to a finite square potential well.
I have derived psi(x) and the k's for the 3 domains,

psi1(x) = Ae^kx => k = sqrt(2m(V-E)/h^2)
psi2(x) = Ce^jkx + De^-jkx => k=sqrt(2mE)/h
psi3(x) = He^-kx => same k as in domain 1

and then what I did was to take the boundry conditions and substitue into the equations and make a system of 4 equations with so that I can solve the unknowns.

What I don't understand is the way I've been told to do this from the above.

I've been told to calculate the determinant of the system of the 4 equations, and by scanning E. When the determinant goes to 0, I will get the energy level for E.
Any one can explain to me why this will give the answer?

And also, it seems like I will need to get the answer by ploting the determinant from its imaginary component. Why?

And when I have the 3 different energy levels that satisfy the conditions, how do I find the unknowns?

Thanks for any help.
 
Last edited:
Physics news on Phys.org


The boundary conditions on the wavefunction and its first derivative give you the system of equations you are referring to.

This is a system of equations linear in the unknown coefficients. So the condition you stated is the condition for the existence of a nontrivial solution for this system.

And also, it seems like I will need to get the answer by ploting the determinant from its imaginary component. Why?

Not sure I understand this. The determinant is a complex number. Setting it equivalent to zero is equivalent to setting its real and imaginary parts to zero separately. Perhaps what you want to do is treat the determinant as a function of the parameter E and plot it as a function of E, to determine the zero crossings, which will give you the eigenvalues.
 


And when I get the energy states Es, how do I find out the unknowns?
 


pepsicola said:
And when I get the energy states Es, how do I find out the unknowns?

You must have obtained a transcendental equation..just solve for the eigenvalues numerically.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
7K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K