MHB Finite vs Ring Groups: Examining Theorems

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Does every theorem that holds for finite group holds for ring groups? Why or Why not?Thanks
Cbarker1
 
Physics news on Phys.org
What do you mean by “ring groups”?
 
A group ring defined as the following from Dummit and Foote:

Fix a commutative ring $R$ with identity $1\ne0$ and let $G=\{g_{1},g_{2},g_{3},...,g_{n}\}$ be any finite group with group operation written multiplicatively. A group ring, $RG$, of $G$ with coefficients in $R$ to be the set of all formal sum

$a_1g_1+a_2g_2+\cdots+a_ng_n$, $a_i\in R$, $1\le i\le n$
 
Well, note that $G$ is a group whereas $RG$ is a ring, so not every theorem about $G$ may be applicable to $RG$. For example, $G$ may be a cyclic group, but there is no such thing as a cyclic ring, so a theorem about cyclic groups may not make sense when applied to rings.

What you can say is that $RG$ contains a subring isomorphic to $R$, namely
$$\{a\cdot e_G:a\in R\}$$
as well as a subset which, with respect to multiplication, forms a group isomorphic to $G$, namely
$$\{1_R\cdot g:g\in G\}.$$
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top