MHB Firedawn's questions at Yahoo Answers regarding minimizing cost of pipeline

  • Thread starter Thread starter MarkFL
  • Start date Start date
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calc - Optimization? Confusing question...?


I don't understand what this question is asking:
A pipeline needs to be connect from a powerhouse to an island. The island is 5 km away from the nearest point, A on a straight shore line. The powerhouse is 13 km away from point A. If it costs 1.4 times as much to lay the pipeline underwater as it does over land, how should the pipe be laid to minimize the cost?

The ans is 5.1 km from A.

What is this question asking me? I'm so confused.
How would I approach this?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Firedawn,

Let's first draw a diagram of the path of the pipeline. All distances are in kilometers.

View attachment 1754

The powerhouse is at $\text{P}$, and the island is at $\text{I}$. The path of the pipeline is drawn in red. Let $C$ be the cost to lay the pipeline over land. The total cost is the cost per unit length time the total length, hence we may express the total cost as a function of $x$ as follows:

$$C(x)=C(13-x)+\frac{7}{5}C\sqrt{x^2+5^2}$$

Differentiating with respect to $x$ and equating the result to zero, we obtain:

$$C'(x)=-C+\frac{7}{5}C\frac{x}{\sqrt{x^2+5^2}}=0$$

Multiply through by $$\frac{5\sqrt{x^2+5^2}}{C}$$

$$-5\sqrt{x^2+5^2}+7x=0$$

$$7x=5\sqrt{x^2+5^2}$$

Square both sides:

$$49x^2=25x^2+625$$

$$x^2=\frac{625}{24}$$

Take the positive root:

$$x=\frac{25}{12}\sqrt{6}\approx5.10310363079829$$

To determine the nature of the extremum associated with this critical value, we may use the second derivative test:

$$C'(x)=-C+\frac{7}{5}C\frac{x}{\sqrt{x^2+5^2}}=0$$

$$C''(x)=0+\frac{7}{5}C\frac{\sqrt{x^2+5^2}(1)-x\left(\dfrac{x}{\sqrt{x^2+5^2}} \right)}{\left(\sqrt{x^2+5^2} \right)^2}=\frac{35C}{\left(x^2+5^2 \right)^{\frac{3}{2}}}$$

We see that for all real $x$ the second derivative is positive, hence our critical value is at the global minimum.
 

Attachments

  • firedawn.jpg
    firedawn.jpg
    6.3 KB · Views: 108
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top