MHB Floor Function: Real Value of $k$ & $x$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion focuses on two mathematical problems involving the floor function. The first problem seeks the real values of \( k \) such that \( k\lfloor x \rfloor = \lfloor kx \rfloor \), concluding that \( k \) can only be 0 or 1. The second problem finds values of \( x \) for which \( \lfloor \frac{x}{2011} \rfloor = \lfloor \frac{x}{2012} \rfloor \), identifying intervals where this equality holds, specifically \( x \in [2012, 4021] \) and \( 4024 \leq x \leq 6032 \). The largest value of \( x \) for which the floors are equal is \( 4044120 \), where both floor functions yield 2010. The analysis emphasizes the integer nature of \( k \) and the behavior of \( x \) under the floor function.
juantheron
Messages
243
Reaction score
1
(1) find real value of $k$ for which $k\lfloor x \rfloor = \lfloor kx \rfloor$

(2) find value of $x$ for which $\displaystyle \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor$

where $\lfloor x \rfloor = $ floor function
 
Mathematics news on Phys.org
jacks said:
(1) find real value of $k$ for which $k\lfloor x \rfloor = \lfloor kx \rfloor$

(2) find value of $x$ for which $\displaystyle \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor$

where $\lfloor x \rfloor = $ floor function

For (2), 2012 since the floor of 2012/2011 = 1 and 2012/2012 = 1.

If you want values though, it would be $x\in [2012,4021]$
 
in general \lfloor x \rfloor = a \Rightarrow a \leq x < a+1

\lfloor x k \rfloor = k \lfloor x \rfloor

k \lfloor x \rfloor \leq x k < k \lfloor x \rfloor +1

0 \leq x k - k \lfloor x \rfloor <1

0 \leq k(x - \lfloor x \rfloor) <1

x - \lfloor x \rfloor = {0,1} if x integer 0 if x is not integer 1

0 \leq k < 1
But
\lfloor kx \rfloor , \lfloor x \rfloor are both integers which leave k to be integer so k=0 and k=1
 
Last edited:
dwsmith said:
jacks said:
(1) find real value of $k$ for which $k\lfloor x \rfloor = \lfloor kx \rfloor$

(2) find value of $x$ for which $\displaystyle \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor$

where $\lfloor x \rfloor =$ floor function

For (2), 2012 since the floor of 2012/2011 = 1 and 2012/2012 = 1.

If you want values though, it would be $x\in [2012,4021]$
Those are the numbers for which $\displaystyle \left\lfloor \frac{x}{2011}\right\rfloor = \left\lfloor \frac{x}{2012}\right\rfloor = 1.$ There are also the numbers $0\leqslant x\leqslant 2010$ for which $\displaystyle \left\lfloor \frac{x}{2011}\right\rfloor = \left\lfloor \frac{x}{2012}\right\rfloor = 0.$ Then there are the numbers $4024 \leqslant x\leqslant 6032$ for which $\displaystyle \left\lfloor \frac{x}{2011}\right\rfloor = \left\lfloor \frac{x}{2012}\right\rfloor = 2,$ and a whole lot of other intervals going right up to the number $X = 4044120 = 2012\times 2010.$ This has the property that $\displaystyle \left\lfloor \frac{X}{2011}\right\rfloor = \left\lfloor \frac{X}{2012}\right\rfloor = 2010,$ and it is the largest number for which $\displaystyle \left\lfloor \frac{X}{2011}\right\rfloor$ and $\left\lfloor \dfrac{X}{2012}\right\rfloor$ are equal.
 
Amer said:
in general \lfloor x \rfloor = a \Rightarrow a \leq x < a+1

\lfloor x k \rfloor = k \lfloor x \rfloor

k \lfloor x \rfloor \leq x k < k \lfloor x \rfloor +1

0 \leq x k - k \lfloor x \rfloor <1

0 \leq k(x - \lfloor x \rfloor) <1

x - \lfloor x \rfloor = {0,1} if x integer 0 if x is not integer 1

0 \leq k < 1
But
\lfloor kx \rfloor , \lfloor x \rfloor are both integers which leave k to be integer so k=0 and k=1
Or you can solve it in other way if x=1

k = \floor k \rfloor so k should be integer
------
the trivial solution is k={0,1}, suppose k is not 0 or 1

choose x = 1/k, if k>0 \lfloor \frac{1}{k} \rfloor = 0 if k <0 \lfloor \frac{1}{k} \rfloor = -1

k \lfloor \frac{1}{k} \rfloor = {0,-1}

\floor k \left(\frac{1}{k}\right) \rfloor = 1
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K