Floor Function: Real Value of $k$ & $x$

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Function
Click For Summary

Discussion Overview

The discussion revolves around the properties of the floor function, specifically addressing two problems: finding the real value of \( k \) such that \( k\lfloor x \rfloor = \lfloor kx \rfloor \), and determining the values of \( x \) for which \( \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor \). The scope includes mathematical reasoning and exploration of the floor function's behavior.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Debate/contested

Main Points Raised

  • Some participants propose that for the equation \( k\lfloor x \rfloor = \lfloor kx \rfloor \), the values of \( k \) must be integers, specifically \( k = 0 \) or \( k = 1 \).
  • Others argue that if \( k \) is not equal to 0 or 1, then choosing \( x = \frac{1}{k} \) leads to different floor function results depending on the sign of \( k \).
  • One participant suggests that for the second problem, the intervals for \( x \) where \( \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor \) include \( x \in [2012, 4021] \) and also \( 0 \leq x \leq 2010 \), among others.
  • Another participant mentions that the largest number \( X = 4044120 \) satisfies \( \lfloor \frac{X}{2011}\rfloor = \lfloor \frac{X}{2012}\rfloor = 2010 \), indicating a specific case of interest.

Areas of Agreement / Disagreement

Participants express differing views on the values of \( k \) and the intervals for \( x \). There is no consensus on the general solution for \( k \) beyond the integer values, and the discussion remains unresolved regarding the broader implications of the floor function in these contexts.

Contextual Notes

Some assumptions about the behavior of the floor function and the conditions under which the equations hold are not fully explored, leading to potential gaps in understanding the complete range of solutions.

juantheron
Messages
243
Reaction score
1
(1) find real value of $k$ for which $k\lfloor x \rfloor = \lfloor kx \rfloor$

(2) find value of $x$ for which $\displaystyle \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor$

where $\lfloor x \rfloor = $ floor function
 
Physics news on Phys.org
jacks said:
(1) find real value of $k$ for which $k\lfloor x \rfloor = \lfloor kx \rfloor$

(2) find value of $x$ for which $\displaystyle \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor$

where $\lfloor x \rfloor = $ floor function

For (2), 2012 since the floor of 2012/2011 = 1 and 2012/2012 = 1.

If you want values though, it would be $x\in [2012,4021]$
 
in general \lfloor x \rfloor = a \Rightarrow a \leq x < a+1

\lfloor x k \rfloor = k \lfloor x \rfloor

k \lfloor x \rfloor \leq x k < k \lfloor x \rfloor +1

0 \leq x k - k \lfloor x \rfloor <1

0 \leq k(x - \lfloor x \rfloor) <1

x - \lfloor x \rfloor = {0,1} if x integer 0 if x is not integer 1

0 \leq k < 1
But
\lfloor kx \rfloor , \lfloor x \rfloor are both integers which leave k to be integer so k=0 and k=1
 
Last edited:
dwsmith said:
jacks said:
(1) find real value of $k$ for which $k\lfloor x \rfloor = \lfloor kx \rfloor$

(2) find value of $x$ for which $\displaystyle \lfloor \frac{x}{2011}\rfloor = \lfloor \frac{x}{2012}\rfloor$

where $\lfloor x \rfloor =$ floor function

For (2), 2012 since the floor of 2012/2011 = 1 and 2012/2012 = 1.

If you want values though, it would be $x\in [2012,4021]$
Those are the numbers for which $\displaystyle \left\lfloor \frac{x}{2011}\right\rfloor = \left\lfloor \frac{x}{2012}\right\rfloor = 1.$ There are also the numbers $0\leqslant x\leqslant 2010$ for which $\displaystyle \left\lfloor \frac{x}{2011}\right\rfloor = \left\lfloor \frac{x}{2012}\right\rfloor = 0.$ Then there are the numbers $4024 \leqslant x\leqslant 6032$ for which $\displaystyle \left\lfloor \frac{x}{2011}\right\rfloor = \left\lfloor \frac{x}{2012}\right\rfloor = 2,$ and a whole lot of other intervals going right up to the number $X = 4044120 = 2012\times 2010.$ This has the property that $\displaystyle \left\lfloor \frac{X}{2011}\right\rfloor = \left\lfloor \frac{X}{2012}\right\rfloor = 2010,$ and it is the largest number for which $\displaystyle \left\lfloor \frac{X}{2011}\right\rfloor$ and $\left\lfloor \dfrac{X}{2012}\right\rfloor$ are equal.
 
Amer said:
in general \lfloor x \rfloor = a \Rightarrow a \leq x < a+1

\lfloor x k \rfloor = k \lfloor x \rfloor

k \lfloor x \rfloor \leq x k < k \lfloor x \rfloor +1

0 \leq x k - k \lfloor x \rfloor <1

0 \leq k(x - \lfloor x \rfloor) <1

x - \lfloor x \rfloor = {0,1} if x integer 0 if x is not integer 1

0 \leq k < 1
But
\lfloor kx \rfloor , \lfloor x \rfloor are both integers which leave k to be integer so k=0 and k=1
Or you can solve it in other way if x=1

k = \floor k \rfloor so k should be integer
------
the trivial solution is k={0,1}, suppose k is not 0 or 1

choose x = 1/k, if k>0 \lfloor \frac{1}{k} \rfloor = 0 if k <0 \lfloor \frac{1}{k} \rfloor = -1

k \lfloor \frac{1}{k} \rfloor = {0,-1}

\floor k \left(\frac{1}{k}\right) \rfloor = 1
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K