For j >1 the first 2^j digits are correct

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the iteration formula $$x_{j+1}=2x_j-3x_j^2$$ with a starting point of $x_0=0.3$ to approximate $\frac{1}{3}$. The participants demonstrate that for $j \geq 1$, the first $2^j$ digits of $x_j$ are correct for $\frac{1}{3}$. They establish this through mathematical induction, confirming the base case and inductive step. The final expression derived for $x_j$ is $$x_j=-\frac{1}{3}\cdot \frac{1}{10^{2^j}}+\frac{10}{3}$$, which accurately reflects the approximations discussed.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with iteration methods in numerical analysis
  • Knowledge of power series and their convergence
  • Basic algebraic manipulation of equations
NEXT STEPS
  • Study mathematical induction techniques in depth
  • Explore numerical methods for root-finding, particularly Newton's method
  • Learn about convergence rates of iterative methods
  • Investigate power series and their applications in numerical approximations
USEFUL FOR

Mathematicians, students studying numerical analysis, and anyone interested in iterative methods for approximating values in mathematical contexts.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

We have the iteration formula $$x_{j+1}=2x_j-3x_j^2$$ and using the starting point $x_0=0.3$ we get the following approximations for $\frac{1}{3}$ :

\begin{align*}&x_1=2x_0-3x_0^2=2\cdot 0.3-3\cdot 0.3^2=0.33 \\ &x_2=2x_1-3x_1^2=2\cdot 0.33-3\cdot 0.33^2=0.3333 \\ &x_3=2x_2-3x_2^2=2\cdot 0.3333-3\cdot 0.3333^2=0.33333333\end{align*}

Now I want to show that for $j\geq 1$ the first $2^j$ digits of $x_j$ are correct for $\frac{1}{3}$.

It is $\frac{1}{3}=0.33333333333333333333333333\ldots$.

The approximation $x_1$ has the first $2=2^1$ digits correct.

The approximation $x_2$ has the first $4=2^2$ digits correct.

The approximation $x_3$ has the first $8=2^3$ digits correct.To show that it holds for $j\geq 1$ do we have to use induction? :unsure:
 
Last edited by a moderator:
Mathematics news on Phys.org
Hi mathmari!

Induction seems to be the way to go yes.
So we need to write $x_j$ in terms of $2^j$. Can we find such an expression? 🤔
 
Klaas van Aarsen said:
Induction seems to be the way to go yes.
So we need to write $x_j$ in terms of $2^j$. Can we find such an expression? 🤔

As a power of $10$ we get \begin{align*}x_j&=\sum_{i=1}^{2^j}\frac{3}{10^i}=3\cdot \sum_{i=1}^{2^j}\frac{1}{10^i}=3\cdot \left (\sum_{i=0}^{2^j}\frac{1}{10^i}-1\right )=3\cdot \frac{\frac{1}{10^{2^j+1}}-1}{\frac{1}{10}-1}-3=3\cdot \frac{\frac{1}{10^{2^j+1}}-1}{-\frac{9}{10}}-3=-\frac{10}{9}\cdot 3\cdot \left (\frac{1}{10^{2^j+1}}-1\right )-3=-\frac{10}{3}\cdot \left (\frac{1}{10^{2^j+1}}-1\right )-3=-\frac{10}{3}\cdot \frac{1}{10^{2^j+1}}+\frac{10}{3}-3\\ & =-\frac{1}{3}\cdot \frac{1}{10^{2^j}}+\frac{1}{3}\end{align*} right?
So by induction on $j$ we get:

Base Case: For $j=1$ we get the desired result, as seen.

Inductive Hypothesis: We suppose that the formula is true for $j=k$, i.e. $\displaystyle{x_k=-\frac{1}{3}\cdot \frac{1}{10^{2^k}}+\frac{1}{3}}$.

Inductive Step: We want to show that the formula is true also for $j=k+1$ : \begin{align*}x_{k+1}=2x_k-3x_k^2\ &\overset{(IH)}{=} \ 2\left (-\frac{1}{3}\cdot \frac{1}{10^{2^k}}+\frac{1}{3}\right )-3\left (-\frac{1}{3}\cdot \frac{1}{10^{2^k}}+\frac{1}{3}\right )^2\\ & =-\frac{2}{3}\cdot \frac{1}{10^{2^k}}+2\cdot \frac{1}{3}-3\left (\frac{1}{3^2}\cdot \frac{1}{10^{2^{k+1}}}-2\cdot \frac{1}{3}\cdot \frac{1}{10^{2^k}}\cdot \frac{1}{3}+\frac{1}{3^2}\right ) \\ & =-\frac{2}{3}\cdot \frac{1}{10^{2^k}}+2\cdot \frac{1}{3}-\frac{1}{3}\cdot \frac{1}{10^{2^{k+1}}}+2\cdot \frac{1}{10^{2^k}}\cdot \frac{1}{3}-\frac{1}{3}\\ & =\frac{1}{3}-\frac{1}{3}\cdot \frac{1}{10^{2^{k+1}}} \end{align*}

So we get that this hold for every $j\geq 1$ (Happy)
 
Last edited by a moderator:
mathmari said:
As a power of $10$ we get \begin{align*}x_j&=-\frac{1}{3}\cdot \frac{1}{10^{2^j}}+\frac{10}{3}\end{align*} right?
Suppose we substitute $j=1$. Then we should get $x_1=0.33$ yes?
$$x_1=-\frac{1}{3}\cdot \frac{1}{10^{2^1}}+\frac{10}{3}=-\frac{1}{300}+\frac{10}{3}=3.33$$
That's not correct is it? :eek:
 
Klaas van Aarsen said:
Suppose we substitute $j=1$. Then we should get $x_1=0.33$ yes?
$$x_1=-\frac{1}{3}\cdot \frac{1}{10^{2^1}}+\frac{10}{3}=-\frac{1}{300}+\frac{10}{3}=3.33$$
That's not correct is it? :eek:

I found my error! I edited my previous post and the correct result came out!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K