Formulating the correct least action expression

Click For Summary
Formulating the correct Lagrangian for a physical system involves ensuring it is gauge invariant and, for relativistic systems, Lorentz invariant. The Lagrangian typically includes terms like (dx/dt) squared for particles and (d∅/dt) squared for fields. While there are guidelines to help derive a suitable Lagrangian, such as requiring it to be a scalar for general covariance, the correct expression often cannot be determined from first principles. Experimentation plays a crucial role in identifying the Lagrangian that aligns with observed physical behavior. Ultimately, the goal is to derive equations of motion that agree with experimental results.
qtm912
Messages
37
Reaction score
1
I am trying to understand how, for a given physical system it is possible to come up with the correct expression for the lagrangian and thence the least action formulation from which the governing equations can be derived by application of the euler lagrange equation. From what I have seen so far (and I may be mistaken) this seems to involve some intelligent guesswork. So I conclude as follows :

- the lagrangian (or if not the lagrangian then the least action) must be chosen so that it is gauge invariant

- the lagrangian should contain terms like (dx/dt) squared for single particles where x represents phase space and correspondingly for a field ∅, with terms in d∅/dt squared

- for relativistic systems the lagrangian (or the least action?) should also be lorenz invariant

Then through a process of experimentation the lagrangian and corresponding least action can be found.

This is my understanding so far and I am asking if this (ie any of the above) is correct.

Many thanks
 
Physics news on Phys.org
The general Lagrangian is simply the Lagrangian which leads to the correct equations of motion (i.e. the one that agrees with experiment). There are some general "guidelines" that you can follow if you want your theory to obey some properties, but that's about it. You cannot, in general, find the correct Lagrangian of a theory from first principles.

If you want your theory to be Lorentz invariant, then the action must be Lorentz invariant. If you want your theory to be generally covariant, then the action should be a scalar (in the sense that it is coordinate system independent). If you want your field equations to be linear, then you need a quadratic term in the fields in your Lagrangian.

There are just some general guidelines; however.
 
Thank you Matterwave for clarifying.
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
14K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K