MHB Forrest's question at Yahoo Answers regarding a solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
Click For Summary
The discussion focuses on calculating the volume of a solid formed by rotating the area bounded by the curves y = e^-x, y = 1, and x = 2 around the line y = 2. The washer method is detailed, with the volume expressed as an integral that combines the outer and inner radii. An alternative shell method is also presented, showcasing the integration process for both methods, which ultimately yield the same volume result. The calculations involve applying the Fundamental Theorem of Calculus and integration by parts for logarithmic functions. The final volume is confirmed to be consistent across both methods.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Two Help Washers?

Find the volume of the solid by rotating the region bounded by the given curves
y= e^-x, y= 1 and x=2 about y=2
step by step would be very helpful thanks!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Forrest,

I would begin by drawing a diagram of the region to be revolved, with the axis of rotation and the lengths of the inner and outer radius ($r$ and $R$ respectively):

View attachment 1315

The volume of an arbitrary washer is:

$$dV=\pi\left(R^2-r^2 \right)\,dx$$

where:

$$R=1+1-e^{-x}=2-e^{-x}$$

$$r=1$$

and so we have:

$$dV=\pi\left(\left(2-e^{-x} \right)^2-(1)^2 \right)\,dx=\pi\left(e^{-2x}-4e^{-x}+3 \right)\,dx$$

Summing the washers through integration, we obtain:

$$V=\pi\int_0^2 e^{-2x}-4e^{-x}+3\,dx$$

Applying the FTOC, we find:

$$V=\pi\left[-\frac{1}{2}e^{-2x}+4e^{-x}+3x \right]_0^2=\pi\left(\left(-\frac{1}{2}e^{-4}+4e^{-2}+6 \right)-\left(-\frac{1}{2}+4 \right) \right)=\frac{\pi}{2e^4}\left(5e^4+8e^2-1 \right)$$

If we wish to check our result by using the shell method, then refer to the following diagram:

View attachment 1316

The volume of an arbitrary shell is:

$$dV=2\pi rh\,dy$$

where:

$$r=2-y$$

$$h=2+\ln(y)$$

And so we have:

$$dV=2\pi (2-y)\left(2+\ln(y) \right)\,dy=2\pi\left(4+2\ln(y)-2y-y\ln(y) \right)\,dy$$

Summing the shells by integration, we have:

$$V=2\pi\int_{e^{-2}}^1 4+2\ln(y)-2y-y\ln(y)\,dy$$

Each of the terms can be readily integrated except for those involving the natural log function, so let's use integration by parts:

i) $$I=\int \ln(y)\,dy$$

$$u=\ln(y)\,\therefore\,du=\frac{1}{y}\,dy$$

$$dv=dy\,\therefore\,v=y$$

Hence:

$$I=y\ln(y)-\int\,dy=y\left(\ln(y)-1 \right)$$

ii) $$I=\int y\ln(y)\,dy$$

$$u=\ln(y)\,\therefore\,du=\frac{1}{y}\,dy$$

$$dv=y\,dy\,\therefore\,v=\frac{1}{2}y^2$$

Hence:

$$I=\frac{1}{2}y^2\ln(y)-\frac{1}{2}\int y\,dy$$

$$I=\frac{1}{2}y^2\ln(y)-\frac{1}{4}y^2=\frac{y^2}{4}\left(2\ln(y)-1 \right)$$

Now we may apply the FTOC to compute the volume:

$$V=2\pi\left[4y+2y\left(\ln(y)-1 \right)-y^2-\frac{y^2}{4}\left(2\ln(y)-1 \right) \right]_{e^{-2}}^1=2\pi\left(\left(\frac{5}{4} \right)-\left(-\frac{2}{e^2}+\frac{1}{4e^4} \right) \right)=$$

$$\frac{\pi}{2e^4}\left(5e^4+8e^2-1 \right)$$

And this checks with the washer method.
 

Attachments

  • forrest.jpg
    forrest.jpg
    7.2 KB · Views: 87
  • forrest2.jpg
    forrest2.jpg
    7.9 KB · Views: 101