bugatti79
- 786
- 4
Hi Folks,
I need to evaluate the following function f(t)=A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi) to find f(\omega) using the Fourier transform.
Ie, the Fourier transform I use is
f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} f(t) (\cos \omega t+ j \sin \omega t)dt
giving
f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi) (\cos \omega t+ j \sin \omega t)dt
We are integrating wrt t but we have 3 different frequencies. Not sure how to handle this...
Basically i want to plot the frequency response as a function of \omega_1 and \omega_2...any ideas?
I need to evaluate the following function f(t)=A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi) to find f(\omega) using the Fourier transform.
Ie, the Fourier transform I use is
f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} f(t) (\cos \omega t+ j \sin \omega t)dt
giving
f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi) (\cos \omega t+ j \sin \omega t)dt
We are integrating wrt t but we have 3 different frequencies. Not sure how to handle this...
Basically i want to plot the frequency response as a function of \omega_1 and \omega_2...any ideas?
Last edited: