From fluid energy conservation equation to the continuity equation

Click For Summary
SUMMARY

The discussion focuses on deriving the continuity equation from the energy conservation equation in fluid dynamics, specifically for adiabatic processes involving ideal gases. The key equations referenced include the energy-balance equation, De/Dt + (γ - 1)e ∇·u = - (1/ρ)(u · ∇)p, and the momentum-balance equation, Dp/Dt + γp ∇·u = 0. The substitution of e = (1/(γ - 1))(p/ρ) is crucial for the derivation, leading to the conclusion that the pressure must be constant for the right-hand side to equal zero. The discussion emphasizes the importance of understanding these relationships in the context of ideal hydrodynamics.

PREREQUISITES
  • Understanding of fluid dynamics principles
  • Familiarity with adiabatic processes in thermodynamics
  • Knowledge of the continuity equation in fluid mechanics
  • Proficiency in manipulating differential equations
NEXT STEPS
  • Study the derivation of the continuity equation from the energy conservation equation in fluid dynamics
  • Explore the implications of the ideal gas law on fluid behavior
  • Learn about the speed of sound in fluids and its relationship to pressure and density
  • Investigate the role of the coefficient γ (gamma) in thermodynamic equations
USEFUL FOR

Students and professionals in fluid dynamics, mechanical engineers, and physicists who are involved in the study of thermodynamics and fluid behavior in adiabatic processes.

happyparticle
Messages
490
Reaction score
24
Homework Statement
Derive the continuity equation from the energy conservation equation
Relevant Equations
##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##
##\frac{Dp}{Dt} + \gamma p \nabla\cdot \vec{u} = 0##
##\frac{D}{Dt} \frac{p}{\rho^{\gamma}} = 0##
##e = \frac{1}{\gamma -1} \frac{p}{\rho}##
Hey there,

First of all, all energy conservation equations for a fluid I found on google hadn't the ##\gamma## coefficient. What exactly is the difference?

Secondly, by substituting e by ##e = \frac{1}{\gamma -1} \frac{p}{\rho}## in the following equation ##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ## I got ##\frac{D}{Dt}(\frac{1}{\gamma -1} \frac{p}{\rho}) + (\gamma - 1)(\frac{1}{\gamma -1} \frac{p}{\rho}) \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##

=> ## \frac{D}{Dt}(\frac{1}{\gamma -1}) p + p \nabla \cdot \vec{u} = - (\vec{u} \cdot \nabla)p ##

Then, I'm wondering if in this case the pressure is constant to have the right hand side equal to 0?
Anyway, I don't get the expecting result.
 
Last edited:
Physics news on Phys.org
That's the energy-balance and momentum-balance equation for adiabatic processes. So you deal with ideal hydrodynamics. The task is to derive the continuity equation
$$\partial_t \rho + \vec{\nabla} \cdot (\rho \vec{u})=0.$$
 
If I understood
$$
\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p \hspace{10pt} (1)
$$
Is the energy-balance equation

and
$$
\frac{Dp}{Dt} + \gamma p \nabla\cdot \vec{u} = 0 \hspace{10pt} (2)
$$
is the momentum-balanced equation

I'm should be able to get (2) from (1) by replacing ##e## in (1).
 
vanhees71 said:
No, why?
I have a problem that I have get equation (2) and ##
\frac{D}{Dt} \frac{p}{\rho^{\gamma}} = 0
##

From equation (1) by replacing e with ##
\frac{1}{\gamma -1} \frac{p}{\rho}
##
 
happyparticle said:
Homework Statement: Derive the continuity equation from the energy conservation equation
Relevant Equations: ##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##
##\frac{Dp}{Dt} + \gamma p \nabla\cdot \vec{u} = 0##
##\frac{D}{Dt} \frac{p}{\rho^{\gamma}} = 0##
##e = \frac{1}{\gamma -1} \frac{p}{\rho}##

Hey there,

Secondly, by substituting e by ##e = \frac{1}{\gamma -1} \frac{p}{\rho}## in the following equation ##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ## I got ##\frac{D}{Dt}(\frac{1}{\gamma -1} \frac{p}{\rho}) + (\gamma - 1)(\frac{1}{\gamma -1} \frac{p}{\rho}) \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##

=> ## \frac{D}{Dt}(\frac{1}{\gamma -1}) p + p \nabla \cdot \vec{u} = - (\vec{u} \cdot \nabla)p ##

Then, I'm wondering if in this case the pressure is constant to have the right hand side equal to 0?
Anyway, I don't get the expecting result.
For an ideal gas, you just need a constitutive equation, the speed of sound will do. So from:
\frac{dp}{d\rho}=a^{2}=\frac{\gamma p}{\rho}
You write:
dp=\frac{\gamma p}{\rho}d\rho\Rightarrow\frac{Dp}{Dt}=\frac{\gamma p}{\rho}\frac{D\rho}{Dt}

From here, you can manipulate it however you want.
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K