From fluid energy conservation equation to the continuity equation

happyparticle
Messages
490
Reaction score
24
Homework Statement
Derive the continuity equation from the energy conservation equation
Relevant Equations
##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##
##\frac{Dp}{Dt} + \gamma p \nabla\cdot \vec{u} = 0##
##\frac{D}{Dt} \frac{p}{\rho^{\gamma}} = 0##
##e = \frac{1}{\gamma -1} \frac{p}{\rho}##
Hey there,

First of all, all energy conservation equations for a fluid I found on google hadn't the ##\gamma## coefficient. What exactly is the difference?

Secondly, by substituting e by ##e = \frac{1}{\gamma -1} \frac{p}{\rho}## in the following equation ##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ## I got ##\frac{D}{Dt}(\frac{1}{\gamma -1} \frac{p}{\rho}) + (\gamma - 1)(\frac{1}{\gamma -1} \frac{p}{\rho}) \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##

=> ## \frac{D}{Dt}(\frac{1}{\gamma -1}) p + p \nabla \cdot \vec{u} = - (\vec{u} \cdot \nabla)p ##

Then, I'm wondering if in this case the pressure is constant to have the right hand side equal to 0?
Anyway, I don't get the expecting result.
 
Last edited:
Physics news on Phys.org
That's the energy-balance and momentum-balance equation for adiabatic processes. So you deal with ideal hydrodynamics. The task is to derive the continuity equation
$$\partial_t \rho + \vec{\nabla} \cdot (\rho \vec{u})=0.$$
 
If I understood
$$
\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p \hspace{10pt} (1)
$$
Is the energy-balance equation

and
$$
\frac{Dp}{Dt} + \gamma p \nabla\cdot \vec{u} = 0 \hspace{10pt} (2)
$$
is the momentum-balanced equation

I'm should be able to get (2) from (1) by replacing ##e## in (1).
 
vanhees71 said:
No, why?
I have a problem that I have get equation (2) and ##
\frac{D}{Dt} \frac{p}{\rho^{\gamma}} = 0
##

From equation (1) by replacing e with ##
\frac{1}{\gamma -1} \frac{p}{\rho}
##
 
happyparticle said:
Homework Statement: Derive the continuity equation from the energy conservation equation
Relevant Equations: ##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##
##\frac{Dp}{Dt} + \gamma p \nabla\cdot \vec{u} = 0##
##\frac{D}{Dt} \frac{p}{\rho^{\gamma}} = 0##
##e = \frac{1}{\gamma -1} \frac{p}{\rho}##

Hey there,

Secondly, by substituting e by ##e = \frac{1}{\gamma -1} \frac{p}{\rho}## in the following equation ##\frac{De}{Dt} + (\gamma - 1)e \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ## I got ##\frac{D}{Dt}(\frac{1}{\gamma -1} \frac{p}{\rho}) + (\gamma - 1)(\frac{1}{\gamma -1} \frac{p}{\rho}) \nabla \cdot \vec{u} = - \frac{1}{\rho} (\vec{u} \cdot \nabla)p ##

=> ## \frac{D}{Dt}(\frac{1}{\gamma -1}) p + p \nabla \cdot \vec{u} = - (\vec{u} \cdot \nabla)p ##

Then, I'm wondering if in this case the pressure is constant to have the right hand side equal to 0?
Anyway, I don't get the expecting result.
For an ideal gas, you just need a constitutive equation, the speed of sound will do. So from:
\frac{dp}{d\rho}=a^{2}=\frac{\gamma p}{\rho}
You write:
dp=\frac{\gamma p}{\rho}d\rho\Rightarrow\frac{Dp}{Dt}=\frac{\gamma p}{\rho}\frac{D\rho}{Dt}

From here, you can manipulate it however you want.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top