Graduate Functional Determinant of a system of differential operators?

Click For Summary
The discussion focuses on computing the determinant of a differential operator matrix with fixed boundary conditions, particularly using the heat-kernel method. Participants explore the validity of dividing by a reference operator in the context of stationary phase approximation for quantum corrections. A proposed algorithm outlines steps for deriving the heat-kernel and its relation to the determinant through the trace of the logarithm of the operator. Concerns are raised about the applicability of this method for more complex operator matrices. The conversation emphasizes the need for careful integration techniques to handle specific matrix examples effectively.
Yellotherephysics
Messages
2
Reaction score
0
TL;DR
When applying the stationary phase approximation for path integrals we need to calculate the determinant of an operator; but what can we do if this operator is itself a matrix (made out of operators!)
So in particular, how could the determinant of some general "operator" like

$$ \begin{pmatrix}
f(x) & \frac{d}{dx} \\ \frac{d}{dx} & g(x)
\end{pmatrix} $$

with appropriate boundary conditions (especially fixed BC), be computed? And assuming that it diverges, would it be valid in a stationary phase approximation context to divide by some reference operator such as

$$ \begin{pmatrix}
0 & \frac{d}{dx} \\ \frac{d}{dx} & 0
\end{pmatrix} $$

and use this value, for the quantum corrections to the classical path?
 
Physics news on Phys.org
Thanks for linking, your notes look really good vanhees71!

Would this be a fair summary for the Heat-Kernel method (starting on page 93 of the linked notes)?
If we call the operator we're interested in H.
  1. Work out the propogator ## \langle x | exp(- H \theta) | x' \rangle ##
  2. Then get some kind of expression for ## \langle x | exp(- H \theta) | x \rangle ##
  3. Find the Heat-Kernel (a function of ##\theta##) by integrating over the coordinates
  4. Find the other Heat-Kernel thing, denoted by ##\tilde{H} ## (a function of the complex parameter ##\alpha##)
  5. Take the complex parameter ##\alpha## to zero, getting the trace of the log of H, which we can then relate to the determinant
Is this algorithm still safe to use if H is something like
\begin{pmatrix}

a(x) & \frac{d}{dx} & b(x) \\ \frac{d}{dx} & c(x) & d(x) \\ e(x) & f(x) & g(x)

\end{pmatrix}
In the notes ## \langle x | exp(- H \theta) | x' \rangle ## is turned into something concrete by integrating over the momentum identity, would I be able to do something similar with my matrix example?
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K