snypehype46 said:
Thanks for the reply. Yes, I think I understand that is what's intended. My question is more: why is it not possible to find such a functor?
We always have the forgetful functor from any category to the category of sets: ##\mathcal{F}:\mathcal{H}\longrightarrow \mathcal{S}## which simply "forgets" the structure, here the structure of the Hilbert spaces. Now the problem described above is a different one: We have some mapping ##\mathbf{F}:\mathcal{H}\longrightarrow \mathcal{S}## given by the mapping to the set of unit vectors, however, this does not define a functor. A functor should preserve subsets, quotients, i.e. mappings in general:
$$
\varphi : {H}_1\longrightarrow {H}_2 \Longrightarrow \mathcal{F}(\varphi ): \mathcal{F}({H}_i) \longrightarrow \mathcal{F}({H}_j)
$$
with ##(i,j)=(1,2)## for covariant functors ##\mathcal{F}## and ##(i,j)=(2,1)## for contravariant functors ##\mathcal{F}.## In short: A functor maps objects to objects and arrows to arrows between those objects. The forgetful (covariant) functor does this: if we have a map between Hilbert spaces, then we get the same map between the underlying sets, without bothering linearity or any other structure.
If a mapping between categories does not relate the mappings between the two categories, then it is no functor. A relationship only between objects does not count.
An example:
Given the category of Lie Algebras ##\mathcal{G}##. Then $$\mathfrak{A(g)}=\{\alpha:\mathfrak{g}\longrightarrow \mathfrak{g}\, : \,[\alpha (X),Y]+[X,\alpha (Y)]=0 \}$$ for a Lie algebra ##\mathfrak{g}## defines another Lie algebra ##\mathfrak{A(g)}##. Hence
$$
\mathfrak{A}(.)\, : \,\mathcal{G}\longrightarrow \mathcal{G}
$$
is a mapping between the objects of two categories (which are the same in this case). But it is not a functor. E.g. consider the inclusion map ##\iota\, : \,\mathfrak{h}\stackrel{\subseteq }{\longrightarrow }\mathfrak{g}## between two Lie algebras. Then there is no natural way to give ##\mathfrak{A}(\iota)## a meaning, since ##\mathfrak{A(h)}## and ##\mathfrak{A(g)}## must no longer be included or otherwise related.