G o F = {(1,3)(2,2)(3,2)(4,2)(5,5)(1,1)(2,3)(3,4)(4,5)(5,2)}

  • Context: MHB 
  • Thread starter Thread starter JProgrammer
  • Start date Start date
  • Tags Tags
    Definition
Click For Summary
SUMMARY

The composition of two functions F and G, denoted as F o G, is calculated by applying G first and then F to the result. Given F = {(1,3)(2,2)(3,2)(4,2)(5,5)} and G = {(1,1)(2,3)(3,4)(4,5)(5,2)}, the correct result for F o G is {(1,3), (2,2), (3,2), (4,5), (5,2)}. This means that for each input x, G is applied first, followed by F. The discussion clarifies the definition of function composition and provides a step-by-step breakdown of the calculations involved.

PREREQUISITES
  • Understanding of function notation and mappings
  • Knowledge of function composition
  • Familiarity with ordered pairs and sets
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of function composition in detail
  • Learn about inverse functions and their relationship with composition
  • Explore examples of function composition with different types of functions
  • Investigate the implications of function composition in programming languages
USEFUL FOR

Mathematics students, educators, and anyone interested in understanding function composition and its applications in various fields, including computer science and algebra.

JProgrammer
Messages
20
Reaction score
0
So I have the following:

F = {(1,3)(2,2)(3,2)(4,2)(5,5)}
G = {(1,1)(2,3)(3,4)(4,5)(5,2)}

Am I right in saying that F o G would be:

F o G = {(1,3)(2,2)(3,2)(4,2)(5,5)(1,1)(2,3)(3,4)(4,5)(5,2)}

If not, does F o G actually mean?

Thank you.
 
Physics news on Phys.org
JProgrammer said:
So I have the following:

F = {(1,3)(2,2)(3,2)(4,2)(5,5)}
G = {(1,1)(2,3)(3,4)(4,5)(5,2)}

Am I right in saying that F o G would be:

F o G = {(1,3)(2,2)(3,2)(4,2)(5,5)(1,1)(2,3)(3,4)(4,5)(5,2)}

If not, does F o G actually mean?

Thank you.
No that is not right. Surely there was a definition of the "composition" of two functions where you first met this concept? (You had, I believe, earlier posted this same "F" asking about F^{-1}. How could you possibly be dealing with inverse functions without knowing what "composition" is? The inverse function is defined by 'F o F^{-1}(x)= F^{-1}o F(x)= x for all x'.)

In any case, we can interpret "F = {(1,3)(2,2)(3,2)(4,2)(5,5)}" as meaning that F(1)= 3, F(2)= 2, F(3)= 2, F(4)= 2, and F(5)= 5. G= {(1,1)(2,3)(3,4)(4,5)(5,2)} can be interpreted a meaning that G(1)= 1, G(2)= 3, G(3)= 4, G(4)= 5, and G(5)= 2.

"F o G" means "to each x, first apply G, then apply F to that". Starting with x= 1, G(1)= 1 and F(1)= 3 so F o G(1)= 3. G(2)= 3 and F(3)= 2 so F o G(2)= 2. G(3)= 4 and F(4)= 2 so F o G(3)= 2. G(4)= 5 and F(5)= 5 so F o G(4)= 5. G(5)= 2 and F(2)= 2 so F o G(5)= 2. Written as a set of pairs, F o G= {(1, 3), (2, 2), (3, 2), (4, 5), (5, 2)}.

Now, can you use that to find G o F?
 
Last edited by a moderator:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K