Gamma function is convergent and continuous

Click For Summary

Discussion Overview

The discussion centers on the convergence and continuity of the Gamma function for values of \(x > 0\). Participants explore the properties of the Gamma function as defined by the integral \(\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} \, dt\), examining both convergence of the integral and the continuity of the function.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant outlines a method to show that the integral defining the Gamma function converges for \(x > 0\) using the comparison test, breaking the integral into two parts.
  • Another participant discusses the continuity of the Gamma function, employing the Mean Value Theorem and analyzing the difference \(|\Gamma(x) - \Gamma(y)|\) in terms of the integral of \(|t^{x-1} - t^{y-1}| e^{-t}\).
  • There are inquiries about the finiteness of certain integrals involving \(|t^{\xi -1} \ln t| e^{-t}\) and how to evaluate them.
  • Some participants express curiosity about the relationships between \(t\) and \(\ln t\) for different ranges of \(t\), suggesting potential inequalities that could aid in proving convergence and continuity.
  • A later reply suggests that the continuity of the Gamma function follows from the established bounds and the behavior of the integral as \(|x - y| \to 0\).

Areas of Agreement / Disagreement

Participants generally agree on the approach to demonstrate the convergence of the Gamma function and the continuity of \(\Gamma(x)\). However, the discussion contains exploratory reasoning and some uncertainty regarding the evaluation of specific integrals and inequalities.

Contextual Notes

Participants note various assumptions and conditions, such as the behavior of \(\ln t\) in different intervals and the need for further evaluation of integrals to establish finiteness. There is also a reliance on the comparison test and the Mean Value Theorem, which may require additional justification in specific cases.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show that the Gamma function converges and is continuous for $x>0$. I have done the following:

The Gamma function is the integral \begin{equation*}\Gamma (x)=\int_0^{\infty}t^{x-1}e^{-t}\, dt\end{equation*}

Let $x>0$.

It holds that \begin{equation*}\int_0^{\infty}t^{x-1}e^{-t}\, dt=\int_0^{1}t^{x-1}e^{-t}\, dt+\int_1^{\infty}t^{x-1}e^{-t}\, dt\end{equation*}

For $t\in (0,1]$ it holds that $|t^{x-1}e^{-t}|\leq t^{x-1}$ and the integral $\displaystyle{\int_0^1t^{x-1}\,dt}$ converges.

Therefore, the integral $\displaystyle{\int_0^1t^{x-1}e^{-t}\, dt}$ converges according to the comparison test.

The function $t\mapsto t^{x+1}e^{-t}$ is continuous on $[1,\infty )$ and $\displaystyle{\lim_{t\rightarrow \infty}t^{x+1}e^{-t}=0}$. That means that this function is bounded on $[1,\infty)$, or not? (Wondering)
That would mean that there is a constant $c\in (0,\infty)$ with \begin{equation*}|t^{x-1}e^{-t}|=|t^{x+1-2}e^{-t}|=\left |\frac{1}{t^2}t^{x+1}e^{-t}\right |\leq \frac{1}{t^2}\left |t^{x+1}e^{-t}\right |\leq \frac{1}{t^2}c=\frac{c}{t^2}\end{equation*}
The integral $\displaystyle{\int_1^{\infty}\frac{c}{t^2}\, dt}$ converges. From the comparison test, the integral $\displaystyle{\int_1^{\infty}t^{x-1}e^{-t}\, dt}$ converges.

That implies that the integral $\displaystyle{\int_0^{\infty}t^{x-1}e^{-t}\, dt}$ converges for $x\in (0,\infty)$.
Is everythijng correct? Could I improve something?

But how could we show that the function is continuous?

(Wondering)
 
Physics news on Phys.org
We have that \begin{equation*}\Gamma(x)-\Gamma(y)=\int_0^{\infty}t^{x-1}e^{-t}dt-\int_0^{\infty}t^{y-1}e^{-t}dt=\int_0^{\infty}(t^{x-1}-t^{y-1})e^{-t}dt\end{equation*}

Let $g(x) = t^{x-1}$. Then it holds that $|g(x)-g(y)|=|t^{x-1}-t^{y-1}|$

We apply the Mean value theorem with the interval $[x,y]$.

Let $\xi \in (x,y)$ then it holds that:
\begin{equation*}g'(\xi)=\frac{g(x)-g(y)}{x-y}\Rightarrow t^{\xi -1}\cdot \ln t=\frac{t^{x-1}-t^{y-1}}{x-y}\end{equation*}
Therefore we get:
\begin{equation*}t^{x-1}-t^{y-1}=t^{\xi -1}\cdot \ln t\cdot (x-y) \Rightarrow |t^{x-1}-t^{y-1}|=|t^{\xi -1}\cdot \ln t\cdot (x-y)|\leq |t^{\xi -1}\cdot \ln t|\cdot |x-y|\end{equation*}

So, we get:
\begin{align*}|\Gamma(x)-\Gamma(y)|&=\left |\int_0^{\infty}(t^{x-1}-t^{y-1})e^{-t}dt\right | \\ & \leq \int_0^{\infty}|(t^{x-1}-t^{y-1})e^{-t}|dt \\ & =\int_0^{\infty}|t^{x-1}-t^{y-1}|e^{-t}dt \\ & \leq \int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot |x-y|\cdot e^{-t}dt \\ & =|x-y|\cdot \int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt\end{align*}

We want to show that the integral is finite, or not?

We have that \begin{equation*}\int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=\int_0^{1}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt+\int_1^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt\end{equation*}

When $0\leq t\leq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\leq 0$. So we get \begin{equation*}\int_0^{1}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=-\int_0^{1}t^{\xi -1}\cdot \ln t\cdot e^{-t}dt\end{equation*}

When $ t\geq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\geq 0$. So we get \begin{equation*}\int_1^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=\int_1^{\infty}t^{\xi -1}\cdot \ln t\cdot e^{-t}dt\end{equation*} How could we continue? (Wondering)
 
Last edited by a moderator:
If t>1, then t>ln t, isn't it?
And if 0<t<1, then -ln t<ln 1/t<1/t, isn't it? (Wondering)
 
I like Serena said:
If t>1, then t>ln t, isn't it?
And if 0<t<1, then -ln t<ln 1/t<1/t, isn't it? (Wondering)

Ah ok!

If $0\leq t\leq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\leq 0$. In this case it also holds that $ -\ln t=\ln \frac{1}{t}<\frac{1}{t}$. So we get \begin{align*}\int_0^{1}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt&=\int_0^{1}t^{\xi -1}\cdot \left (-\ln t\right )\cdot e^{-t}dt \\ & <\int_0^{1}t^{\xi -1}\cdot \frac{1}{t}\cdot e^{-t}dt \\ & =\int_0^{1}t^{\xi -2}\cdot e^{-t}dt \end{align*}

If $ t\geq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\geq 0$. In this case it also holds that $\ln t<t$. So we get \begin{equation*}\int_1^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=\int_1^{\infty}t^{\xi -1}\cdot \ln t\cdot e^{-t}dt<\int_1^{\infty}t^{\xi -1}\cdot t\cdot e^{-t}dt=\int_1^{\infty}t^{\xi }\cdot e^{-t}dt\end{equation*}

Can we calculate these two integrals? (Wondering)
 
Can't we do the same thing as you did in oost #1? (Wondering)
 
I like Serena said:
Can't we do the same thing as you did in oost #1? (Wondering)

Oh yes!

So, we have that \begin{equation*}|\Gamma(x)-\Gamma(y)| \leq|x-y|\cdot \int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt\end{equation*} For $|x-y|\rightarrow 0$ the right side goes to $0$, as the integral is finite. That means that $|\Gamma(x)-\Gamma(y)|$ goes to $0$ and this implies that the function $\Gamma (x)$ is continuous, right? (Wondering)
 
Yep. (Happy)
 
I like Serena said:
Yep. (Happy)

Great! Thank you very much! (Clapping)
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K