MHB Gamma function is convergent and continuous

Click For Summary
The discussion focuses on demonstrating the convergence and continuity of the Gamma function for x > 0. The Gamma function is defined as the integral of t^(x-1)e^(-t) from 0 to infinity, which is shown to converge by splitting the integral into two parts and applying the comparison test. The continuity of the Gamma function is established by analyzing the difference between Gamma values at two points, using the Mean Value Theorem to show that the integral of the absolute difference converges. It is concluded that as the difference between x and y approaches zero, the Gamma function also approaches continuity. The discussion confirms the correctness of the approach and the conclusions drawn.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show that the Gamma function converges and is continuous for $x>0$. I have done the following:

The Gamma function is the integral \begin{equation*}\Gamma (x)=\int_0^{\infty}t^{x-1}e^{-t}\, dt\end{equation*}

Let $x>0$.

It holds that \begin{equation*}\int_0^{\infty}t^{x-1}e^{-t}\, dt=\int_0^{1}t^{x-1}e^{-t}\, dt+\int_1^{\infty}t^{x-1}e^{-t}\, dt\end{equation*}

For $t\in (0,1]$ it holds that $|t^{x-1}e^{-t}|\leq t^{x-1}$ and the integral $\displaystyle{\int_0^1t^{x-1}\,dt}$ converges.

Therefore, the integral $\displaystyle{\int_0^1t^{x-1}e^{-t}\, dt}$ converges according to the comparison test.

The function $t\mapsto t^{x+1}e^{-t}$ is continuous on $[1,\infty )$ and $\displaystyle{\lim_{t\rightarrow \infty}t^{x+1}e^{-t}=0}$. That means that this function is bounded on $[1,\infty)$, or not? (Wondering)
That would mean that there is a constant $c\in (0,\infty)$ with \begin{equation*}|t^{x-1}e^{-t}|=|t^{x+1-2}e^{-t}|=\left |\frac{1}{t^2}t^{x+1}e^{-t}\right |\leq \frac{1}{t^2}\left |t^{x+1}e^{-t}\right |\leq \frac{1}{t^2}c=\frac{c}{t^2}\end{equation*}
The integral $\displaystyle{\int_1^{\infty}\frac{c}{t^2}\, dt}$ converges. From the comparison test, the integral $\displaystyle{\int_1^{\infty}t^{x-1}e^{-t}\, dt}$ converges.

That implies that the integral $\displaystyle{\int_0^{\infty}t^{x-1}e^{-t}\, dt}$ converges for $x\in (0,\infty)$.
Is everythijng correct? Could I improve something?

But how could we show that the function is continuous?

(Wondering)
 
Physics news on Phys.org
We have that \begin{equation*}\Gamma(x)-\Gamma(y)=\int_0^{\infty}t^{x-1}e^{-t}dt-\int_0^{\infty}t^{y-1}e^{-t}dt=\int_0^{\infty}(t^{x-1}-t^{y-1})e^{-t}dt\end{equation*}

Let $g(x) = t^{x-1}$. Then it holds that $|g(x)-g(y)|=|t^{x-1}-t^{y-1}|$

We apply the Mean value theorem with the interval $[x,y]$.

Let $\xi \in (x,y)$ then it holds that:
\begin{equation*}g'(\xi)=\frac{g(x)-g(y)}{x-y}\Rightarrow t^{\xi -1}\cdot \ln t=\frac{t^{x-1}-t^{y-1}}{x-y}\end{equation*}
Therefore we get:
\begin{equation*}t^{x-1}-t^{y-1}=t^{\xi -1}\cdot \ln t\cdot (x-y) \Rightarrow |t^{x-1}-t^{y-1}|=|t^{\xi -1}\cdot \ln t\cdot (x-y)|\leq |t^{\xi -1}\cdot \ln t|\cdot |x-y|\end{equation*}

So, we get:
\begin{align*}|\Gamma(x)-\Gamma(y)|&=\left |\int_0^{\infty}(t^{x-1}-t^{y-1})e^{-t}dt\right | \\ & \leq \int_0^{\infty}|(t^{x-1}-t^{y-1})e^{-t}|dt \\ & =\int_0^{\infty}|t^{x-1}-t^{y-1}|e^{-t}dt \\ & \leq \int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot |x-y|\cdot e^{-t}dt \\ & =|x-y|\cdot \int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt\end{align*}

We want to show that the integral is finite, or not?

We have that \begin{equation*}\int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=\int_0^{1}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt+\int_1^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt\end{equation*}

When $0\leq t\leq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\leq 0$. So we get \begin{equation*}\int_0^{1}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=-\int_0^{1}t^{\xi -1}\cdot \ln t\cdot e^{-t}dt\end{equation*}

When $ t\geq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\geq 0$. So we get \begin{equation*}\int_1^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=\int_1^{\infty}t^{\xi -1}\cdot \ln t\cdot e^{-t}dt\end{equation*} How could we continue? (Wondering)
 
Last edited by a moderator:
If t>1, then t>ln t, isn't it?
And if 0<t<1, then -ln t<ln 1/t<1/t, isn't it? (Wondering)
 
I like Serena said:
If t>1, then t>ln t, isn't it?
And if 0<t<1, then -ln t<ln 1/t<1/t, isn't it? (Wondering)

Ah ok!

If $0\leq t\leq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\leq 0$. In this case it also holds that $ -\ln t=\ln \frac{1}{t}<\frac{1}{t}$. So we get \begin{align*}\int_0^{1}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt&=\int_0^{1}t^{\xi -1}\cdot \left (-\ln t\right )\cdot e^{-t}dt \\ & <\int_0^{1}t^{\xi -1}\cdot \frac{1}{t}\cdot e^{-t}dt \\ & =\int_0^{1}t^{\xi -2}\cdot e^{-t}dt \end{align*}

If $ t\geq 1$ then $t^{\xi-1}\geq 0$ and $\ln t\geq 0$. In this case it also holds that $\ln t<t$. So we get \begin{equation*}\int_1^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt=\int_1^{\infty}t^{\xi -1}\cdot \ln t\cdot e^{-t}dt<\int_1^{\infty}t^{\xi -1}\cdot t\cdot e^{-t}dt=\int_1^{\infty}t^{\xi }\cdot e^{-t}dt\end{equation*}

Can we calculate these two integrals? (Wondering)
 
Can't we do the same thing as you did in oost #1? (Wondering)
 
I like Serena said:
Can't we do the same thing as you did in oost #1? (Wondering)

Oh yes!

So, we have that \begin{equation*}|\Gamma(x)-\Gamma(y)| \leq|x-y|\cdot \int_0^{\infty}|t^{\xi -1}\cdot \ln t|\cdot e^{-t}dt\end{equation*} For $|x-y|\rightarrow 0$ the right side goes to $0$, as the integral is finite. That means that $|\Gamma(x)-\Gamma(y)|$ goes to $0$ and this implies that the function $\Gamma (x)$ is continuous, right? (Wondering)
 
Yep. (Happy)
 
I like Serena said:
Yep. (Happy)

Great! Thank you very much! (Clapping)
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K