RedX
- 963
- 3
I'm trying to show that the generators of the spinor representation:
M^{\mu \nu}=\frac{1}{2}\sigma^{\mu \nu}=\frac{i}{4}[\gamma^\mu,\gamma^\nu]
obey the Lorentz algebra:
[M^{\mu \nu},M^{\rho \sigma}]=i(\delta^{\mu \rho}M^{\nu \sigma}-\delta^{\nu \rho}M^{\mu \sigma}+\delta^{\nu \sigma}M^{\mu \rho}-\delta^{\mu \sigma}M^{\nu \rho})
However, I'm not getting the right answer, so I was hoping someone could point out where I went wrong:
[M^{\mu \nu},M^{\rho \sigma}]=<br /> \frac{-1}{16}[[\gamma^{\mu},\gamma^{\nu}],[\gamma^{\rho},\gamma^{\sigma}]]<br />
<br /> =\frac{-1}{16}[2\gamma^{\mu}\gamma^{\nu}-2g^{\mu \nu},2\gamma^{\rho}\gamma^{\sigma}-2g^{\rho \sigma}]=\frac{-1}{8}[\gamma^{\mu}\gamma^{\nu},\gamma^{\rho}\gamma^{\sigma}]<br />
Now using these relations:
[AB,CD]=[AB,C]D+C[AB,D]
[AB,C]=A{B,C}-{A,C}B
<br /> \frac{-1}{8}[\gamma^{\mu}\gamma^{\nu},\gamma^{\rho}\gamma^{\sigma}]<br /> =\frac{-1}{8}(<br /> [\gamma^{\mu}\gamma^{\nu},\gamma^{\rho}]\gamma^{\sigma}+ <br /> \gamma^{\rho}[\gamma^{\mu}\gamma^{\nu},\gamma^{\sigma}]<br /> )=\frac{-1}{8}(\gamma^{\mu} \{\gamma^{\nu},\gamma^{\rho} \}\gamma^{\sigma}<br /> -\{\gamma^{\mu},\gamma^{\rho} \}\gamma^\nu \gamma^\sigma<br /> +<br /> \gamma^{\rho}\gamma^{\mu} \{\gamma^{\nu},\gamma^{\sigma} \}<br /> - \gamma^\rho \{\gamma^{\mu},\gamma^\sigma \} \gamma^\nu<br /> )
=\frac{-1}{4}(g^{\nu \rho}\gamma^{\mu}\gamma^{\sigma}<br /> -g^{\mu \rho}\gamma^{\nu}\gamma^{\sigma}<br /> +g^{\nu \sigma}\gamma^{\rho}\gamma^{\mu}<br /> -g^{\mu \sigma}\gamma^{\rho}\gamma^{\nu}<br /> )
This last expression almost looks like the Lorentz algebra, but it is missing the partner in the commutator.
M^{\mu \nu}=\frac{1}{2}\sigma^{\mu \nu}=\frac{i}{4}[\gamma^\mu,\gamma^\nu]
obey the Lorentz algebra:
[M^{\mu \nu},M^{\rho \sigma}]=i(\delta^{\mu \rho}M^{\nu \sigma}-\delta^{\nu \rho}M^{\mu \sigma}+\delta^{\nu \sigma}M^{\mu \rho}-\delta^{\mu \sigma}M^{\nu \rho})
However, I'm not getting the right answer, so I was hoping someone could point out where I went wrong:
[M^{\mu \nu},M^{\rho \sigma}]=<br /> \frac{-1}{16}[[\gamma^{\mu},\gamma^{\nu}],[\gamma^{\rho},\gamma^{\sigma}]]<br />
<br /> =\frac{-1}{16}[2\gamma^{\mu}\gamma^{\nu}-2g^{\mu \nu},2\gamma^{\rho}\gamma^{\sigma}-2g^{\rho \sigma}]=\frac{-1}{8}[\gamma^{\mu}\gamma^{\nu},\gamma^{\rho}\gamma^{\sigma}]<br />
Now using these relations:
[AB,CD]=[AB,C]D+C[AB,D]
[AB,C]=A{B,C}-{A,C}B
<br /> \frac{-1}{8}[\gamma^{\mu}\gamma^{\nu},\gamma^{\rho}\gamma^{\sigma}]<br /> =\frac{-1}{8}(<br /> [\gamma^{\mu}\gamma^{\nu},\gamma^{\rho}]\gamma^{\sigma}+ <br /> \gamma^{\rho}[\gamma^{\mu}\gamma^{\nu},\gamma^{\sigma}]<br /> )=\frac{-1}{8}(\gamma^{\mu} \{\gamma^{\nu},\gamma^{\rho} \}\gamma^{\sigma}<br /> -\{\gamma^{\mu},\gamma^{\rho} \}\gamma^\nu \gamma^\sigma<br /> +<br /> \gamma^{\rho}\gamma^{\mu} \{\gamma^{\nu},\gamma^{\sigma} \}<br /> - \gamma^\rho \{\gamma^{\mu},\gamma^\sigma \} \gamma^\nu<br /> )
=\frac{-1}{4}(g^{\nu \rho}\gamma^{\mu}\gamma^{\sigma}<br /> -g^{\mu \rho}\gamma^{\nu}\gamma^{\sigma}<br /> +g^{\nu \sigma}\gamma^{\rho}\gamma^{\mu}<br /> -g^{\mu \sigma}\gamma^{\rho}\gamma^{\nu}<br /> )
This last expression almost looks like the Lorentz algebra, but it is missing the partner in the commutator.