Gaussian Integrals in Two Dimensions

Click For Summary

Discussion Overview

The discussion centers on evaluating a double integral involving an exponential function with quadratic terms in two dimensions. The focus is on the mathematical techniques applicable to this integral, particularly in the context of Gaussian integrals.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant proposes evaluating the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$ under the conditions that ##a## and ##c## are positive and ##ac > b^2##.
  • Another participant suggests that diagonalizing the matrix \begin{pmatrix} a & b \\ b & c \end{pmatrix} could be a beneficial approach to tackle the integral.

Areas of Agreement / Disagreement

There is no explicit agreement or disagreement noted among participants at this stage of the discussion. The conversation remains open to further exploration of the proposed methods.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##a, b##, and ##c## be real numbers such that ##a## and ##c## are positive and ##ac > b^2##. Evaluate the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
Diagonalizing \begin{pmatrix} a & b \\ b & c \end{pmatrix} seems like a good start.
 
  • Like
Likes   Reactions: anuttarasammyak
The matrix in post 2 is symmetric so it is diagonalized by multiplications of orthonormal matrix and its inversed so transversed matrix from the both ends. The orthonormal matrix change bases from x,y to another orthonormal bases, say u,v with ##dxdy=dudv##.
<br /> ax^2+2bxy+cy^2=\begin{pmatrix}<br /> x &amp; y \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> b &amp; c \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> u &amp; v \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \lambda_1&amp; 0 \\<br /> 0 &amp; \lambda_2 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> u \\<br /> v \\<br /> \end{pmatrix}<br /> =\lambda_1 u^2+ \lambda_2 v^2<br />

In this new bases the double integral is carried out independently so the integral is
\frac{\pi}{\sqrt{\lambda_1\lambda_2}}
where eigenvalues ##\lambda_1,\lambda_2## are solutions of quadratic secular equation
(a-\lambda)(c-\lambda)-b^2=0
\lambda^2 -(a+c)\lambda+ac-b^2=0
Thus the integral is
\frac{\pi}{\sqrt{ac-b^2}}
 
Last edited:
  • Like
Likes   Reactions: benorin
\begin{align*}
\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2} dxdy & = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2 + \frac{b^2}{a} y^2 - cy^2} dxdy
\nonumber \\
& = \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2} dx \right) e^{- \frac{1}{a} (ac - b^2) y^2} dy
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \int_{-\infty}^\infty e^{- \frac{1}{a} (ac - b^2) y^2} dy \qquad (\text{note: } ac-b^2 > 0)
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \cdot \sqrt{\frac{a \pi}{ac-b^2}}
\nonumber \\
& = \frac{\pi}{\sqrt{ac-b^2}}
\end{align*}
 
Last edited:
  • Like
Likes   Reactions: benorin, anuttarasammyak, DrClaude and 2 others

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
823
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K