POTW Gaussian Integrals in Two Dimensions

Click For Summary
The discussion focuses on evaluating the double integral of the function e^{-ax^2 - 2bxy - cy^2} under the conditions that a and c are positive and ac > b^2. Participants suggest diagonalizing the matrix formed by the coefficients a, b, and c as a potential method to simplify the integral. This approach involves transforming the variables to eliminate the cross-term 2bxy. The conversation highlights the importance of understanding the properties of Gaussian integrals in two dimensions. Ultimately, the diagonalization technique is emphasized as a crucial step in solving the integral.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##a, b##, and ##c## be real numbers such that ##a## and ##c## are positive and ##ac > b^2##. Evaluate the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$
 
Physics news on Phys.org
Diagonalizing \begin{pmatrix} a & b \\ b & c \end{pmatrix} seems like a good start.
 
  • Like
Likes anuttarasammyak
The matrix in post 2 is symmetric so it is diagonalized by multiplications of orthonormal matrix and its inversed so transversed matrix from the both ends. The orthonormal matrix change bases from x,y to another orthonormal bases, say u,v with ##dxdy=dudv##.
<br /> ax^2+2bxy+cy^2=\begin{pmatrix}<br /> x &amp; y \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> b &amp; c \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> u &amp; v \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \lambda_1&amp; 0 \\<br /> 0 &amp; \lambda_2 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> u \\<br /> v \\<br /> \end{pmatrix}<br /> =\lambda_1 u^2+ \lambda_2 v^2<br />

In this new bases the double integral is carried out independently so the integral is
\frac{\pi}{\sqrt{\lambda_1\lambda_2}}
where eigenvalues ##\lambda_1,\lambda_2## are solutions of quadratic secular equation
(a-\lambda)(c-\lambda)-b^2=0
\lambda^2 -(a+c)\lambda+ac-b^2=0
Thus the integral is
\frac{\pi}{\sqrt{ac-b^2}}
 
Last edited:
\begin{align*}
\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2} dxdy & = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2 + \frac{b^2}{a} y^2 - cy^2} dxdy
\nonumber \\
& = \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2} dx \right) e^{- \frac{1}{a} (ac - b^2) y^2} dy
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \int_{-\infty}^\infty e^{- \frac{1}{a} (ac - b^2) y^2} dy \qquad (\text{note: } ac-b^2 > 0)
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \cdot \sqrt{\frac{a \pi}{ac-b^2}}
\nonumber \\
& = \frac{\pi}{\sqrt{ac-b^2}}
\end{align*}
 
Last edited:
  • Like
Likes benorin, anuttarasammyak, DrClaude and 2 others