POTW Gaussian Integrals in Two Dimensions

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##a, b##, and ##c## be real numbers such that ##a## and ##c## are positive and ##ac > b^2##. Evaluate the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$
 
Physics news on Phys.org
Diagonalizing \begin{pmatrix} a & b \\ b & c \end{pmatrix} seems like a good start.
 
  • Like
Likes anuttarasammyak
The matrix in post 2 is symmetric so it is diagonalized by multiplications of orthonormal matrix and its inversed so transversed matrix from the both ends. The orthonormal matrix change bases from x,y to another orthonormal bases, say u,v with ##dxdy=dudv##.
<br /> ax^2+2bxy+cy^2=\begin{pmatrix}<br /> x &amp; y \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> b &amp; c \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> u &amp; v \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \lambda_1&amp; 0 \\<br /> 0 &amp; \lambda_2 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> u \\<br /> v \\<br /> \end{pmatrix}<br /> =\lambda_1 u^2+ \lambda_2 v^2<br />

In this new bases the double integral is carried out independently so the integral is
\frac{\pi}{\sqrt{\lambda_1\lambda_2}}
where eigenvalues ##\lambda_1,\lambda_2## are solutions of quadratic secular equation
(a-\lambda)(c-\lambda)-b^2=0
\lambda^2 -(a+c)\lambda+ac-b^2=0
Thus the integral is
\frac{\pi}{\sqrt{ac-b^2}}
 
Last edited:
\begin{align*}
\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2} dxdy & = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2 + \frac{b^2}{a} y^2 - cy^2} dxdy
\nonumber \\
& = \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2} dx \right) e^{- \frac{1}{a} (ac - b^2) y^2} dy
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \int_{-\infty}^\infty e^{- \frac{1}{a} (ac - b^2) y^2} dy \qquad (\text{note: } ac-b^2 > 0)
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \cdot \sqrt{\frac{a \pi}{ac-b^2}}
\nonumber \\
& = \frac{\pi}{\sqrt{ac-b^2}}
\end{align*}
 
Last edited:
  • Like
Likes benorin, anuttarasammyak, DrClaude and 2 others
Back
Top