Gaussian Integrals in Two Dimensions

Click For Summary
SUMMARY

The discussion focuses on evaluating the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$ where ##a## and ##c## are positive real numbers and ##ac > b^2##. Participants suggest diagonalizing the matrix \begin{pmatrix} a & b \\ b & c \end{pmatrix} as an effective method to simplify the integral. This approach leverages the properties of Gaussian integrals in two dimensions, leading to a clearer path for evaluation.

PREREQUISITES
  • Understanding of Gaussian integrals
  • Knowledge of matrix diagonalization
  • Familiarity with real analysis concepts
  • Basic proficiency in multivariable calculus
NEXT STEPS
  • Study the properties of Gaussian integrals in multiple dimensions
  • Learn about matrix diagonalization techniques
  • Explore applications of double integrals in physics and engineering
  • Investigate the implications of the condition ##ac > b^2## in integral evaluations
USEFUL FOR

Mathematicians, physicists, and students studying advanced calculus or real analysis, particularly those interested in evaluating complex integrals and understanding multivariable Gaussian distributions.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##a, b##, and ##c## be real numbers such that ##a## and ##c## are positive and ##ac > b^2##. Evaluate the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
Diagonalizing \begin{pmatrix} a & b \\ b & c \end{pmatrix} seems like a good start.
 
  • Like
Likes   Reactions: anuttarasammyak
The matrix in post 2 is symmetric so it is diagonalized by multiplications of orthonormal matrix and its inversed so transversed matrix from the both ends. The orthonormal matrix change bases from x,y to another orthonormal bases, say u,v with ##dxdy=dudv##.
<br /> ax^2+2bxy+cy^2=\begin{pmatrix}<br /> x &amp; y \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> b &amp; c \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> u &amp; v \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \lambda_1&amp; 0 \\<br /> 0 &amp; \lambda_2 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> u \\<br /> v \\<br /> \end{pmatrix}<br /> =\lambda_1 u^2+ \lambda_2 v^2<br />

In this new bases the double integral is carried out independently so the integral is
\frac{\pi}{\sqrt{\lambda_1\lambda_2}}
where eigenvalues ##\lambda_1,\lambda_2## are solutions of quadratic secular equation
(a-\lambda)(c-\lambda)-b^2=0
\lambda^2 -(a+c)\lambda+ac-b^2=0
Thus the integral is
\frac{\pi}{\sqrt{ac-b^2}}
 
Last edited:
  • Like
Likes   Reactions: benorin
\begin{align*}
\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2} dxdy & = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2 + \frac{b^2}{a} y^2 - cy^2} dxdy
\nonumber \\
& = \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2} dx \right) e^{- \frac{1}{a} (ac - b^2) y^2} dy
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \int_{-\infty}^\infty e^{- \frac{1}{a} (ac - b^2) y^2} dy \qquad (\text{note: } ac-b^2 > 0)
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \cdot \sqrt{\frac{a \pi}{ac-b^2}}
\nonumber \\
& = \frac{\pi}{\sqrt{ac-b^2}}
\end{align*}
 
Last edited:
  • Like
Likes   Reactions: benorin, anuttarasammyak, DrClaude and 2 others

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
730
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K