MHB GCD: Fastest Method to Simplify Fractions

  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Gcd Method
Petrus
Messages
702
Reaction score
0
Hello,
I wounder if there is more method Then using euclides algoritmen to solve this problem
Simplifie/shorten(I Dont know how to say in english) $$\frac{196707}{250971}$$ and I get GCD=6783 and get the answer $$\frac{29}{37}$$ is there more method? Is there à method that is a lot more faster Then this one and that method you take out all prime number?
 
Last edited:
Mathematics news on Phys.org
Ackbach said:
There's a novel way of dividing numbers by others numbers of arbitrary length quickly.

How does division helps to simplify a fraction?

Petrus said:
Is there any method that is a lot more faster than this one

I don't see why you think Euclid's method is slow, can elaborate your logic a bit? Well, you might want to look at the Binary GCD algorith then since it shorten the work of finding the GCD quite a bit.
 
mathbalarka said:
How does division helps to simplify a fraction?
I don't see why you think Euclid's method is slow, can elaborate your logic a bit? Well, you might want to look at the Binary GCD algorith then since it shorten the work of finding the GCD quite a bit.
Naa its not really hard, I was just looking for more method to solve it :)
 
mathbalarka said:
How does division helps to simplify a fraction?

Each step of the Euclidean algorithm is a division problem, is it not? If you can speed up each step of Euclid's algorithm, then you speed up Euclid's algorithm.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top