High School General form of electromagnetic vertex function in QFT

Click For Summary
SUMMARY

The discussion centers on the general form of the electromagnetic vertex function, denoted as ##\Gamma_\mu##, in Quantum Field Theory (QFT). The authors derive this function using normalized states and express it in terms of electromagnetic form factors, including contributions from gamma matrices and gamma five. The most general form of ##\Gamma## incorporates various terms involving the Dirac matrices, reflecting the underlying symmetries and invariances of the theory. The discussion highlights the necessity of considering Lorentz invariance when deriving the expression for ##\Gamma##.

PREREQUISITES
  • Understanding of Quantum Field Theory (QFT) principles
  • Familiarity with Dirac matrices and their properties
  • Knowledge of electromagnetic form factors in particle physics
  • Concept of Lorentz invariance in theoretical physics
NEXT STEPS
  • Study the derivation of electromagnetic form factors in QFT
  • Learn about the role of gamma matrices in particle interactions
  • Explore the implications of Lorentz invariance in field theory
  • Investigate the applications of the vertex function in scattering processes
USEFUL FOR

Students and researchers in theoretical physics, particularly those focusing on Quantum Field Theory, particle physics, and the mathematical foundations of electromagnetic interactions.

Wrichik Basu
Science Advisor
Insights Author
Gold Member
Messages
2,180
Reaction score
2,690
TL;DR
How did the authors write the general form of the electromagnetic vertex function out of nowhere?
I am studying a beginner's book on QFT.

In a chapter on electromagnetic form factors, the authors have written, using normalized states,
$$\begin{eqnarray}
\langle \vec{p'}, s'| j_\mu (x) |\vec{p}, s \rangle \ = \ \exp(-i \ q \cdot x) \langle \vec{p'}, s'| j_\mu (0) |\vec{p}, s \rangle \nonumber \\
\Rightarrow \ \langle \vec{p'}, s'| j_\mu (x) |\vec{p}, s \rangle \ = \ \dfrac{\exp(-i \ q \cdot x)}{\sqrt{2 E_p V} \sqrt{2 E_{p'} V}} \bar{u}_{s'} (\vec{p'}) e \Gamma_\mu(p, p') u_s(\vec{p}) \nonumber
\end{eqnarray}$$
where ##q = p - p'##, ##E_p = p^0##, ##E_{p'} = p'^0##, ##\Gamma## is the vertex function, ##u_s## is the plane wave solution of the Dirac Equation, ##\bar{u}_s## is the Dirac conjugate of ##u_s##, and other symbols have their usual meanings.

After this, the authors have said that the most general form of ##\Gamma## is $$ \Gamma_\mu \ = \ \gamma_\mu(F_1 + \tilde{F}_1 \gamma_5) \ + (\ i F_2 + \tilde{F}_2 \gamma_5) \sigma_{\mu \nu} q^\nu \ + \tilde{F}_3 q_\mu \not\!q\gamma_5 \ + \ q_\mu (F_4 + \tilde{F}_4\gamma_5),$$ where ##\sigma_{\mu \nu} \ = \ \frac{i}{2} \left[\gamma_\mu, \ \gamma_\nu\right]## and ##\gamma_5 \ = \ \frac{i}{4!} \epsilon_{\mu\nu\lambda\rho} \gamma^\mu \gamma^\nu \gamma^\lambda \gamma^\rho##, all the ##F##'s are the electromagnetic form factors and other symbols have their usual meanings.

I understand that the book is for beginners, but how did the authors, out of nowhere, write down the general form for ##\Gamma##?
 
Last edited:
Physics news on Phys.org
The products of one or more ##\gamma## and ##\gamma_5##, forms a basis for all matrices of dimension 4. ##\Gamma## can thus be written in a basis of them. You need then also to take into account e.g. Lorentz invariance in order to arrive at the expression for ##\Gamma##.
 
Last edited by a moderator:
  • Like
Likes Wrichik Basu
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K