MHB General solution to 2nd order....

Click For Summary
The discussion revolves around finding a general solution to the differential equation y" + 4y' + 3y = 4^(-t) using the method of undetermined coefficients. The user successfully determined the general solution to the homogeneous equation as y(t) = Ae^(-t) + Be^(-3t) but struggled with the particular solution due to the non-standard exponential base. It was suggested that the particular solution could be of the form y_p(t) = A * 4^(-t), aligning with the transformation of 4^(-t) into an exponential function. The user confirmed a derived expression for the particular solution, which was validated by another participant in the thread. The conversation highlights the importance of correctly identifying the form of the particular solution in relation to the homogeneous solution.
rayne1
Messages
32
Reaction score
0
I'm supposed to use undetermined coefficients to find a general solution to:
y" + 4y' +3y =4^(-t)

I can't find an example online where f(t) is equal to an exponential function that does not have e as the base, so I have no idea how to solve it.

So far, I found the general solution to the homogeneous equation which is:
y(t) = Ae^(-1t) + Be^(-3t).
 
Physics news on Phys.org
rayne said:
I'm supposed to use undetermined coefficients to find a general solution to:
y" + 4y' +3y =4^(-t)

I can't find an example online where f(t) is equal to an exponential function that does not have e as the base, so I have no idea how to solve it.

So far, I found the general solution to the homogeneous equation which is:
y(t) = Ae^(-1t) + Be^(-3t).

When what you try for a particular solution appears in your homogeneous solution, multiply it by t. If that appears in it, multiply that by t, etc...

Here $\displaystyle \begin{align*} y = C\,t\,\mathrm{e}^{-t} \end{align*}$ should work.
 
Prove It said:
When what you try for a particular solution appears in your homogeneous solution, multiply it by t. If that appears in it, multiply that by t, etc...

Here $\displaystyle \begin{align*} y = C\,t\,\mathrm{e}^{-t} \end{align*}$ should work.

I tried and it didn't work. Don't know if I made a mistake in differentiating but this is what I did:
y = Cte^(-t)
y' = Ce^(-t)-Cte^(-t)
y'' = -Ce^(-t)-Ce^(-t)-Cte^(-t)

When I plugged it back into the original equation, I got 0.

Edit: Oh, Is y" supposed to equal -Ce^(-t)-Ce^(-t)+Cte^(-t), instead?
 
Last edited:
Hint:

$$4^{-t}=e^{-\ln(4)t}$$

So, can you show that the particular solution must be of the form:

$$y_p(t)=A\cdot4^{-t}$$?
 
MarkFL said:
Hint:

$$4^{-t}=e^{-\ln(4)t}$$

So, can you show that the particular solution must be of the form:

$$y_p(t)=A\cdot4^{-t}$$?

Not sure if correct, but I got:

yp(t) = 4^(-t)/(log^2(4)-4(log(4))+3)
 
rayne said:
Not sure if correct, but I got:

yp(t) = 4^(-t)/(log^2(4)-4(log(4))+3)

Yes, that agrees with W|A. Good job! (Yes)
 
rayne said:
I tried and it didn't work. Don't know if I made a mistake in differentiating but this is what I did:
y = Cte^(-t)
y' = Ce^(-t)-Cte^(-t)
y'' = -Ce^(-t)-Ce^(-t)-Cte^(-t)

When I plugged it back into the original equation, I got 0.

Edit: Oh, Is y" supposed to equal -Ce^(-t)-Ce^(-t)+Cte^(-t), instead?

Yes it should be $\displaystyle \begin{align*} y'' = -C\,\mathrm{e}^{-t} - C\,\mathrm{e}^{-t} + C\,t\,\mathrm{e}^{-t} = C\,t\,\mathrm{e}^{-t} - 2C\,\mathrm{e}^{-t} \end{align*}$...

- - - Updated - - -

I apologise, for some reason I read the RHS of your DE as $\displaystyle \begin{align*} 4\mathrm{e}^{-t} \end{align*}$, not $\displaystyle \begin{align*} 4^{-t} \end{align*}$. Please disregard my other posts in this thread.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K