MHB Generalised Quaternion Algebra over K - Dauns Section 1-5 no 19

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dauns book "Modules and Rings", Exercise 19 in Section 1-5 reads as follows: (see attachment)

Let K be any ring with [FONT=MathJax_Main]1[FONT=MathJax_Main]∈[FONT=MathJax_Math]K whose center is a field and $$ 0 \ne x, 0 \ne y \in $$ center K are any elements.

Let I, J, and IJ be symbols not in K.

Form the set K[I, J] = K + KI + KJ + KIJ of all K linear combinations of {1, I, J, IJ}.

The following multiplication rules apply: (These also apply in my post re Ex 18!)

$$ I^2 = x, J^2 = y, IJ = -JI, cI = Ic, cIJ = JIc $$ for all $$ c \in K $$

Prove that the ring K[I, J] is isomorphic to a ring of $$ 2 \times 2 $$ matrices as follows:

$$ a + bJ \rightarrow \begin{pmatrix} a & by \\ \overline{b} & \overline{a} \end{pmatrix} $$ for all $$ a,b \in K $$

-------------------------------------------------------------------------------

I am not sure how to go about this ... indeed I am confused by the statement of the problem. My issue is the following:

Elements of K[I, J] are of the form r = a + bI + cJ + dIJ so we would expect an isomorphism of K[I, J] to specify how elements of this form are mapped into another ring, but we are only told how elements of the form s = a + bJ are mapped. ?

Can someone please clarify this issue and help me to get started on this exercise?

Peter
 
Last edited:
Physics news on Phys.org
K[I,J] is naturally isomorphic to K[J]:

a + bI + cJ + dIJ <--> (a+bI) + (c+dI)J
 
Deveno said:
K[I,J] is naturally isomorphic to K[J]:

a + bI + cJ + dIJ <--> (a+bI) + (c+dI)J


Thank you Deveno ... but still thinking

Mind you I (stupidly) missed the point that $$ a, b \in K $$ which your post has made me highly aware of - will go back to this now.

Peter
 
Peter said:
Thank you Deveno ... but still thinking

Mind you I (stupidly) missed the point that $$ a, b \in K $$ which your post has made me highly aware of - will go back to this now.

Peter


Based on Deveno's help I have now worked through a good deal of the problem ... and I am satisfied I now understand it ...

For members of MHB interested in this exercise, I have attached a check of the fact $$ \phi (x, y) = \phi (x) \phi (y) $$ 'works' for $$ {element}_{11} $$ of the isomorphism $$ \phi $$ ...

I must say that John Dauns' is not afraid to set his students at Tulane University a fair amount of symbol manipulation ... :)

Peter
 
Peter said:
Based on Deveno's help I have now worked through a good deal of the problem ... and I am satisfied I now understand it ...

For members of MHB interested in this exercise, I have attached a check of the fact $$ \phi (x, y) = \phi (x) \phi (y) $$ 'works' for $$ {element}_{11} $$ of the isomorphism $$ \phi $$ ...

I must say that John Dauns' is not afraid to set his students at Tulane University a fair amount of symbol manipulation ... :)

Peter

I just looked up Jon Dauns on the Internet and discovered that, very sadly, John Dauns passed away in 2009.

It is a sad loss to algebra ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top