MHB Generalizing Rigid Motions Group w/ Metric

  • Thread starter Thread starter topsquark
  • Start date Start date
  • Tags Tags
    Groups
topsquark
Science Advisor
Homework Helper
Insights Author
MHB
Messages
2,020
Reaction score
843
Define:
[math]Euc(n) = \{ T \in End( \mathbb{R}^n )| ~ ||Tx - Ty|| = ||x - y||~\forall x,y \in \mathbb{R}^n \}[/math]

This is defined as the Euclidean group of rigid motions.

Can we generalize this group to be defined with any metric (well actually inner product, I suppose)? Obviously it won't be Euclidean any more. Would that represent a group of "rigid motions" as defined by that metric?

-Dan

Edit: I should mention that in the definition of Euc(n) [math]||x|| = \sqrt{ \sum_i x_i^2 }[/math].
 
Physics news on Phys.org
topsquark said:
Define:
[math]Euc(n) = \{ T \in End( \mathbb{R}^n )| ~ ||Tx - Ty|| = ||x - y||~\forall x,y \in \mathbb{R}^n \}[/math]

This is defined as the Euclidean group of rigid motions.

Can we generalize this group to be defined with any metric (well actually inner product, I suppose)? Obviously it won't be Euclidean any more. Would that represent a group of "rigid motions" as defined by that metric?

-Dan

Edit: I should mention that in the definition of Euc(n) [math]||x|| = \sqrt{ \sum_i x_i^2 }[/math].

Yes.
It's called an isometry.
Literally translated: equal metric.
You only need a metric to define it. Neither an inner product, nor a norm are required.
 
I like Serena said:
Yes.
It's called an isometry.
Literally translated: equal metric.
You only need a metric to define it. Neither an inner product, nor a norm are required.
Ah! Yes, I have heard of isometries. (I must actually be starting to understand how some of this stuff crosses course boundaries.) Thanks for the info!

-Dan
 
Here is how I think of it:

A METRIC is a "spatial thing", it tells us "how separated" (we use "how far apart" as measured by the metric) two points are.

A NORM is a "vector thing"-there is this requirement of "homogeneity" (also called absolute scalability)which tells us that the norm is "consistent" with scalar multiplication:

$\|\alpha v\| = |\alpha|\|v\|$

Given a normed vector space, one can define a metric $d$ by:

$d(u,v) = \|u - v\|$.

Now one of the properties of a norm $\|\cdot\|$ is that:

$\|v\| = 0 \iff v = 0$.

This implies $d(u,v) = 0 \iff u = v$.

A norm must also satisfy the TRIANGLE INEQUALITY:

$\|u + v\| \leq \|u\| + \|v\|$

From this we have:

$0 = \|v + -v\| \leq \|v\| + \|-v\| = \|v\| + \|(-1)v\| = \|v\| + |-1|\|v\| = 2\|v\|$

so a norm is positive-definite, and so $d: V \times V \to \Bbb R_0^+$.

The triangle property of a norm tells us:

$d(u,w) = \|u - w\| = \|u - v + v - w\| \leq \|u - v\| + \|v - w\| = d(u,v) + d(v,w)$, so we have a bona-fide metric.

However, not ALL metrics on a vector space are "compatible" with the vector space structure:

We can define, for example, the "discrete metric":

$d(v,v) = 0$, for all $v \in V$.

$d(u,v) = 1$, if $u \neq v$, which is not absolutely scalable, so does not correspond to a norm.

It is possible to give examples of two metrics which induce the same topology on a vector space $V$, but one is a norm, and one is not, but I will not do so here.

Even MORE restrictive, is the case of an inner product space. An inner product $\langle \cdot,\cdot\rangle$ induces a norm by:

$\|v\| = \sqrt{\langle v,v \rangle}$

But not all norms arise in this way, an example is the $p$-norm for $p \neq 2$:

$\displaystyle \|v\|_p = \left(\sum_i^n |v_i|^p\right)^{1/p}$ which is NOT an inner product.

$\Bbb R^n$ is rather special: It's an inner product space with a topology induced by the metric which is induced by the norm induced by its inner product. Moreover, the vector space addition and scalar multiplication are continuous maps.

Note that $\text{End}(\Bbb R^n)$ has a natural ring structure (the ring of Endomorphisms of the $\Bbb R$-module $\Bbb R^n$), which is isomorphic to the ring of $n \times n$ matrices over $\Bbb R$ (this isomorphism is not "canonical" but depends on a choice of basis, so speaking in terms of "matrices" depends on picking a "coordinate system", while speaking of $\text{End}(\Bbb R^n)$ is "basis-free")).

The group of units of this ring, is the general linear group, which can also be written $\text{Aut}(\Bbb R^n)$. Note that LINEAR isometries (under any metric for for a finite-dimensional vector space) are automatically bijective (isometries are always injective, via positivity of the metric, and in a finite-dimensional vector space setting, $T \in \text{End}(V)$ is injective if and only if it is surjective, by the rank-nullity theorem).

In the "physical world", invertible linear maps correspond to "reversible" linear transformations of a space: in other words, "no loss of information". In more abstract structures, just as with ordinary integers, 0 continues to play "the bad guy".
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
4
Views
2K
Replies
7
Views
2K
Replies
9
Views
2K
Replies
52
Views
3K
Replies
1
Views
1K
Replies
51
Views
5K
Replies
4
Views
1K
Replies
9
Views
2K
Back
Top