# Generating Mathematical Images?

• Mathematica
• Zurtex
In summary, the best way to generate high resolution mathematical images is by using software such as Maple, Mathematica, or LaTeX, which have drawing capabilities. Another option is to use Surf, a program specifically designed for drawing surfaces and other aspects of algebraic geometry. Guides and tutorials for these programs can be found through a simple Google search. Additionally, websites like Source Forge offer a variety of mathematics software that may be helpful for generating complex images like the Devil's Staircase.

#### Zurtex

Homework Helper
Hey, I was wondering what's the best way to generate mathematical images?

I was really hoping of creating a few really high resolution ones and popping down to the print shop to have them printed out. But I have a couple of problems:

1) How do I go about generating a mathematical image such as "The Devil's Stair Case" or some Fractal or some 2 dimensional surface in 3D space (well a representation of)? I need some tool where I can have the picture calculated in some arbitrary large resolution, preferably with such options as sub-pixel rendering or if it makes it look better Anti-Aliasing.

2) I'm not completely sure what DPI means I can print out at, I have 2 options of high resolution printing, 2400 DPI or 5200 DPI, does anyone know what this would mean in terms of something like "2560 x 1600 on an A4 piece of paper"?

Any help would be greatly appreciated.

some solutions depending on the situation:

maple, mathematica, latex has drawing capabilities, surf, xfig.

I imagine the first two are good for the problem of the Devil's Staircase. Surf is for drawing surfaces and other aspects of real algebraic geometry, and very fancy it is too.

here is a defunct page (the CSS is wrong which is why it lookts terrible), but the picture there is done with surf and some experiment with fibonacci numbers as exponents.

http://www.maths.bris.ac.uk/~maxmg/maths/introductory/algebraicart.html [Broken]

Last edited by a moderator:
Thanks .

Would you mind providing a link to surf? I can't seem to find it very easily

Also if you could link to some guides, that would be great. I'm having hard time finding anything that constructive to people who don't have a good working knowledge in the first place.

Google for 'surf algebraic geometry'. (the description I gave of it...). It is the first hit: surf.sourceforge.net

source forge has whole sections devoted to mathematics software; there may be solutions to your initial problem of the devil's staircase.

Last edited:
Thank you, sorry I tried searching similar phrases but didn't get very far.

## 1. How are mathematical images generated?

Mathematical images are generated using mathematical equations and algorithms. These equations and algorithms are programmed into a computer software, which then uses them to produce the desired image.

## 2. What is the purpose of generating mathematical images?

The purpose of generating mathematical images is to visually represent complex mathematical concepts and ideas. It allows for a better understanding and visualization of abstract concepts, and can also be used for data visualization and artistic purposes.

## 3. What are some common tools and software used for generating mathematical images?

There are various tools and software available for generating mathematical images, such as MATLAB, Mathematica, and GeoGebra. These programs have built-in functions and features specifically designed for creating mathematical images.

## 4. Is it possible to create 3D mathematical images?

Yes, it is possible to create 3D mathematical images using specialized software and techniques. These images can represent complex 3D mathematical objects and can be manipulated and viewed from different angles.

## 5. Can mathematical images be used in real-world applications?

Yes, mathematical images have various real-world applications, such as in engineering, architecture, and computer graphics. They can also be used for educational purposes and in scientific research to visualize and analyze data.