MHB Geometric Progression sequence with an Arithmetic Progression grouping problem

Click For Summary
The discussion revolves around solving a problem involving a geometric progression sequence grouped by an arithmetic progression. The proposed solution is 2^[(n^2 + n)/2] - 1, but participants are struggling to understand how to derive this from the sum of terms in the specified range. The formula for the sum of a geometric series is introduced, leading to the conclusion that the sum should be computed from the specified indices. Clarification is sought on how to simplify the expression to match the given solution. The conversation highlights the complexity of transitioning between the two summation forms.
nicodemus1
Messages
16
Reaction score
0
Good Day,

My friends and I are stuck on solving the last part of the attached problem.

The solution is 2^[(n^2 + n)/2] - 1.

Can anyone help us with solving this?

Thanks & Regards,
Nicodemus
 
Mathematics news on Phys.org
The solution you give would be the sum of all the terms in the first n groups, not the sum of just the terms in the nth group.

Let:

$\displaystyle p<q$ where $\displaystyle p,q\in\mathbb{N}$

and then:

$\displaystyle S=2^p+2^{p+1}+2^{p+2}+\cdots+2^{q}$

$\displaystyle 2S=2^{p+1}+2^{p+2}+2^{p+3}+\cdots+2^{q}+2^{q+1}$

Subtracting the former from the latter, we find:

$\displaystyle S=2^{q+1}-2^p$

Now, let:

$\displaystyle p=\frac{n^2-n}{2},\,q=\frac{n^2+n}{2}-1$
 
Good Day,

Thank you for the reply.

However, I don't see how it simplifies to the given solution. If it does, then I would first have to divide the expression by a term, right? How do I obtain that term and division from?

Thanks & Regards,
Nicodemus
 
The given solution is for:

$\displaystyle \sum_{k=0}^{\frac{n^2+n}{2}-1}2^k$

However, you are being asked to compute:

$\displaystyle \sum_{k=\frac{n^2-n}{2}}^{\frac{n^2+n}{2}-1}2^k$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
716
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K