MHB George Bake's question at Yahoo Answers regarding the Ricker curve

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Curve
AI Thread Summary
The Ricker curve, represented by the equation y=axe^-bx, models the relationship between adult fish populations and their offspring. To find the critical point, the first derivative is set to zero, leading to the critical value x=1/b. The first derivative test indicates that this critical point is a global maximum. The coordinates of this maximum are (1/b, a/be). The discussion encourages further calculus inquiries on the math help forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Word Problem?

The number of offspring in a population may not be a linear function of the number of adults. The Ricker curve, used to model fish populations, claims that y=axe^-bx , where x is the number of adults, y is the number of offspring, and ^a and ^b are positive constants.

a.) Find and classify the critical point of the Ricker curve

Here is a link to the question:

Calculus Word Problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello George Bake,

We are given the Ricker curve:

$$y=axe^{-bx}$$

To find the critical point, we need to equate the first derivative to zero:

$$y'=a\left(x\left(-be^{-bx} \right)+(1)e^{-bx} \right)=ae^{-bx}(1-bx)=0$$

Since $$0<ae^{-bx}$$ for all real $x$, the only critical value comes from:

$$1-bx=0\,\therefore\,x=\frac{1}{b}$$

Using the first derivative test, we may observe:

$$y'(0)=ae^{-b\cdot0}(1-b\cdot0)=a>0$$

$$y'\left(\frac{2}{b} \right)=ae^{-b\cdot\frac{2}{b}}(1-b\cdot\frac{2}{b})=-ae^{-2}<0$$

Hence the critical point is a global maximum, and is at:

$$\left(\frac{1}{b},y\left(\frac{1}{b} \right) \right)=\left(\frac{1}{b},\frac{a}{be} \right)$$

To George Bake and any other guests viewing this topic, I invite and encourage you to post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top