MHB George Bake's question at Yahoo Answers regarding the Ricker curve

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Curve
AI Thread Summary
The Ricker curve, represented by the equation y=axe^-bx, models the relationship between adult fish populations and their offspring. To find the critical point, the first derivative is set to zero, leading to the critical value x=1/b. The first derivative test indicates that this critical point is a global maximum. The coordinates of this maximum are (1/b, a/be). The discussion encourages further calculus inquiries on the math help forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Word Problem?

The number of offspring in a population may not be a linear function of the number of adults. The Ricker curve, used to model fish populations, claims that y=axe^-bx , where x is the number of adults, y is the number of offspring, and ^a and ^b are positive constants.

a.) Find and classify the critical point of the Ricker curve

Here is a link to the question:

Calculus Word Problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello George Bake,

We are given the Ricker curve:

$$y=axe^{-bx}$$

To find the critical point, we need to equate the first derivative to zero:

$$y'=a\left(x\left(-be^{-bx} \right)+(1)e^{-bx} \right)=ae^{-bx}(1-bx)=0$$

Since $$0<ae^{-bx}$$ for all real $x$, the only critical value comes from:

$$1-bx=0\,\therefore\,x=\frac{1}{b}$$

Using the first derivative test, we may observe:

$$y'(0)=ae^{-b\cdot0}(1-b\cdot0)=a>0$$

$$y'\left(\frac{2}{b} \right)=ae^{-b\cdot\frac{2}{b}}(1-b\cdot\frac{2}{b})=-ae^{-2}<0$$

Hence the critical point is a global maximum, and is at:

$$\left(\frac{1}{b},y\left(\frac{1}{b} \right) \right)=\left(\frac{1}{b},\frac{a}{be} \right)$$

To George Bake and any other guests viewing this topic, I invite and encourage you to post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top