MHB Getting variance from known correlation

das1
Messages
40
Reaction score
0
Suppose X and Y have the same distribution, and Corr(X,Y) = -0.5. Find V[X+Y].

I know that Corr(X,Y)*SD[X]SD[Y] = Cov(X,Y)

and also V[X+Y] = V[X] + V[Y] + 2Cov(X,Y)

So there must be a missing link, maybe an identity, that I'm not realizing. I think the fact that the 2 variables have the same distribution is probably important, I'm just not sure how.

Thanks!
 
Mathematics news on Phys.org
das said:
Suppose X and Y have the same distribution, and Corr(X,Y) = -0.5. Find V[X+Y].

I know that Corr(X,Y)*SD[X]SD[Y] = Cov(X,Y)

and also V[X+Y] = V[X] + V[Y] + 2Cov(X,Y)

So there must be a missing link, maybe an identity, that I'm not realizing. I think the fact that the 2 variables have the same distribution is probably important, I'm just not sure how.

Thanks!

Hey das! (Smile)

Since X and Y have the same distribution, we have that V[Y]=V[X] and SD[Y]=SD[X].
What if you substitute that and combine the equations you already have?
 
Hi thank you!

So substituting that we have something like $$-0.5 = \frac{Cov(X,Y)}{SD[X]^2}$$ and $$V[X+Y] = 2V[X] + 2Cov[X+Y]$$ Wouldn't we still need to know more info, like what Cov(X,Y) is, before solving? And we can't get those without knowing what SD[X] or V[X] are (or SD[Y] or V[Y]). Don't we need one more constant here?
 
Last edited:
OK, did it all out and got
$$\frac{-var(X)}{2} = cov(X,Y)$$
then $$-var(X) = 2cov(X,Y)$$
then $$V[X+Y] = V[X] = V[Y]$$
I was thinking I needed a constant but not sure if that's possible here...is there a way I can actually make this a constant or is this as simple as it can get?
 
Yep. That's it and it is as simple as it can get. (Nod)

Note that if X and Y were uncorrelated, we would have $V[X+Y] = 2V[X]^2$.
Now that X and Y are negative correlated by a factor of $-\frac 1 2$ that factor of $2$ effectively disappears.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top